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Abstract

Teaching algebra for understanding requires a shift toward
mathematical reasoning, away from merely memorizing procedures. To
this end we developed a guided inquiry, technology-based algebra
curriculum: Visual Math (LIR’OT MATEMATICA, in Hebrew, CET,
1995). The design of VisualMath is rooted in the philosophical stance in
favor of mathematical reasoning and in socio-cultural pedagogical
practices. I argue that in order to design for an inquiry curriculum in
school mathematics, it is important to develop a perspective toward the
subject matter and to design in a way that reflects this perspective.

VisualMath applets

This article contains links to online, working versions of some of the applets
described. VisualMath applets require Microsoft Internet Explorer and may not
run reliably in other browsers. You will also need the Java plug in (available
from www.java.com). When you open the applets, you will be asked (possibly
multiple times) to confirm that you want to run software downloaded from
www.cet.ac.il.

1. Introduction

VisualMath was designed to challenge traditional notions of what school
mathematics is and how it can be taught and learned. For over two decades, this
curriculum has been implemented in a variety of settings in Israel. As the
product of academic laboratory development, VisualMath aims to address future
innovations and analyze the potential of new technologies. Innovative resources
were designed and incorporated at a time when personal technology, e-books,
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and mobile hardware were still in their infancy. Developing innovative
instructional materials in an environment in which technology is continually
changing carries the risk of allowing the technological aspirations to drive the
design of the pedagogical engine. Schools in Israel as in the rest of the world
have been undergoing educational reforms aimed at standardization of skills
and centralization of assessment. Developing for these schools means coping
with societal and curricular constraints that at times are in tension with
innovative visions. In such an atmosphere charged with conflict, a clear view of
the structure of the algebra that must be learned and of how traditional school-
algebra content must be restructured served as an important anchor.

2. Challenge and Vision

Our view of “doing mathematics” assumed the evolution of mathematical
knowledge as a process centered on conjecturing. An important example that
attracted the attention of philosophers of mathematics and educators (Hersh,
2006, Sriraman & English 2010) and affected our thinking was Lakatos’s essay
Proofs and Refutations (1976). Lakatos presents a case study of inquiry guided
by a teacher regarding Euler’s theorem, that challenges mathematical formalism
in order “to elaborate the point that informal, quasi-empirical, mathematics
does not grow through a monotonous increase of the number of theorems but
the improvement of guesses by speculation and criticism” (p. 5). Lakatos did not
intend to present a didactic situation. He used the situation of teacher, task, and
students as “…a sort of rationally reconstructed or ‘distilled’ history” (p. 5).
Lakatos’s philosophy of quasi-empirical development of mathematical concepts
has been the subject for important philosophical debate (Hanna, 1996).
Sriraman & English (ibid.) provide an extensive recent review of the influence of
Lakatos’s work on the formats of constructivism in mathematics education. For
over two decades concerns have been raised about the over-popularization of
Lakatos’s work, and much criticism has been voiced about the blur between
social constructions as a philosophy of mathematics and the pedagogy of social
constructivism. Although the development of the Euler-Descartes theorem for
polyhedrons is considered to be a unique case rather than representative of the
development of mathematical theorems, the essay is known by “…the rich work
of informal mathematics characterized by conjectures, failed proofs, thought
experiments, examples and counter-examples etc.” (Sriraman & English ibid. p.
9). Lakatos provided what he characterized as a “simple pattern of mathematical
discovery – or of the growth of informal mathematical theories” (p. 127),
consisting of the following seven stages: (a) primitive conjecture; (b) proof (a
rough thought, experiment, or argument); (c) conjecture and proof failed -
global counter-examples to the primitive conjecture; (d) proof re-examined; (e)
primitive conjecture improved; (f) other theorems examined to analyze the
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newly proved concept that “might be lying at the cross-roads of different
proofs;” and (g) analyzing accepted consequences and turning counter-examples
into examples of a new field of inquiry. The list of seven stages does not describe
a linear progression but rather a series of repeated cycles of stages revisited.
Lakatos’s informal construction of mathematics challenged my thinking about
the learning and teaching of mathematics and affected directly Judah Schwartz’s
and my attempts to design a learning environment and instructional materials
that would support the guided inquiry in school mathematics. Our first
challenge was to design a setting that would support Lakatos’s first required
step, that of “[having a] primitive conjecture;” we wondered what could be
regarded as “primitive” for young learners and could be developed to be
considered important mathematics. By designing, developing, and studying the
possibilities of including conjecturing into the core of the school geometry
curriculum (Schwartz, 1995) we learn to appreciate the didactics based on
conjecturing, which became feasible with the Geometric Supposer (Schwartz &
Yerushalmy, 1985/2000). This work laid the foundation of the design of the
VisualMath algebra curriculum. The following example demonstrates the
common process of raising a naïve conjecture in classrooms of all ages working
with the Geometric Supposer.

The short episode shown in Figure 1 with 5th graders learning about sub-families
of quadrilaterals, involves a pair of students attempting to understand the
properties of kites. They start with an observation of a specific example
presented by the Geometric Supposer (the students were videotaped in 1991,
working with an older version of the software, the first one designed in Hebrew
to run on classroom computer mini-systems, long before personal computers
made their appearance in schools). As they compare the properties of the kite
with those of a familiar rhombus, they run into the issue of inclusion: the
diagonals of the rhombus are perpendicular and bisect each other, whereas the
diagonals of the kite are perpendicular and only one of the diagonals bisects the
other. The students asked: “Could it be that a kite belongs to the rhombi or the
rhombus is a kite?” This primitive conjecture then became a subject for inquiry.
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Figure 1: 5th graders’ quasi-empirical inquiry

The video can be played from the online version.

A second challenge had to do with the quasi-empirical process of reasoning. We
wondered what would motivate young students to argue, refute, and revise
conjectures, and whether such prominent habits of mathematical reasoning can
become part of the routine pedagogy of school mathematics. With the
popularization of personal technology that can be used to easily provide
examples, educators expected that data would naturally lead to inquiry. But
observations would support what Lakatos had argued, namely that “Naive
conjectures are not inductive conjectures: we arrive at them by trial and error,
through conjectures and refutations. But if you — wrongly — believe that you
arrived at them inductively from your tables, if you believe that the longer the
table the more conjectures it will suggest, you may waste your time compiling
unnecessary data” (1976, p. 74). Learners need scaffolding in order to perform a
mathematical process that would elicit doubts and questions, and would create
the motivation to look for patterns and to resolve the disagreements. To
approach these pedagogical challenges, it was necessary to design learning
settings in which principal concepts (shared by the mathematical philosophy of
social construction), such as mathematical objects and actions, as well as
methods of mathematical truth would become relevant issues of school
mathematics. The scaffolding has taken a variety of shapes and occurred both in
the mathematics class and as part of homework. Classroom settings include
individual or pair work with activities for exploration and whole class
discussions and are described in numerous articles that are beyond the scope of
this paper . Here I wish to have a glimpse at the whole-group discussion to
demonstrate conjecturing at the heart of routine guided inquiry. The three
boards in Figure 2 document the end product of what amounts to a class period
in which the teacher posed a problem and collected answers in the form of
conjectures grown out of observations and argumentations.
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Figure 2: Documenting students' mathematics

In the geometry class (Figure 2 top), students were given a construction and
were asked to look for any interesting properties of it. They worked with the
Geometric Supposer to formulate their conclusions, after which they were asked
to reformulate them to make them fit a diagram and signs drawn by the teacher
on the board. The teacher mainly documented the suggested solutions, then
divided the long list into those that are agreed upon and can be proved and those
that are not yet. The teacher then asked students to continue working on the less
agreed ones. In the 7th grade beginners algebra class (Figure 2 middle), the only
available manipulative was a sticky 10x10 board of the sequence 1 to 100,
adjacent to the board. The teacher presented the task (“Describe a phenomenon
relating the four numbers in any 2x2 section of the 10x10 board”) and asked for
the students’ suggestions. He tried to limit his utterances to clarifications of the
students’ language and intentions.
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Some of the suggestions were based on preceding answers: refuting, agreeing,
suggesting improvements, and at times suggesting a new idea. The records on
the board were kept and presented as a topic for discussion that laid down the
first ideas about the use of letters in algebra. In the 9th grade, with the
introduction of two-variable equations (Figure 2 bottom), students looked for
the representation of two-variable equations in the graph. They worked first in
groups, some using paper and pencil, others brought in manipulatives. Next, the
teacher asked each group to present its process of exploration and its
conclusions to the class. During the presentations students managed the
discussion, and the teacher, who did not interfere in the presentations,
summarized all proposals on the board.

In each episode students suggested multiple solutions and nuances for the topic
at hand. Feedback by classmates, and less frequently by the teacher, was based
on the plausibility of the new idea in relation to known class mathematics. It was
clear that the process was dependent on cultural and personal components and
could have taken several other directions of construction in other groups or at
some other time. And although complete freedom was granted in the statement
of all three tasks, the conjectures were all related to the curriculum and
considered part of the school learning occurring in institutions that adopted and
developed specific practices, norms and visions regarding the meaning of
knowing, learning and teaching.

A somewhat similar learning could occur in the course of guided visits to the
exhibits of a museum. Similarly to a designed curriculum, a museum exhibit has
an agenda presented by its curators: a view of the subject. The choices of objects,
the relations between the objects, and the centrality of specific items (often a few
important objects are presented in a way to focus the visitor’s attention) are all
designed to reflect a certain view of the subject. An exhibit may be distributed
over many galleries (at times taking place in parallel in a different museum), and
many objects are presented in each gallery. As in the case of our envisioned
algebra curriculum, it is often too demanding for visitors to explore all the
galleries and they must choose where to go either by reading the map of the
exhibit or by being guided to specific galleries. Interested visitors may want to
come again and take the tour in a different order or visit the galleries they have
not yet seen. Guidance, like teaching, can take the shape of a linear sequence
charted by a tour guide. Another tour may follow a different sequence and
change according to visitors’ interest. Yet another tour could be augmented by
technology to provide information in a given order but also support direct access
to objects of the visitors’ choice. Some museums could offer hands-on
experience, supporting actions with content central to the exhibit. Thus, the
museum exhibit is a designed space of relations between objects and between
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objects and viewers, which can support the development and understanding of
ideas about the content and about the structure of a subject. We were looking for
a representation of school algebra to guide our design of school learning and
teaching

3. Designing a Representation of the Domain

There is obvious tension between the specific order of teaching and learning
along which the school curriculum proceeds, and the personal and social
constructions of meaningful mathematics (Windschitl, 2002). Cognitive theories
support curricula designed with the assumption that for most students the order
marks a smooth progression. Tall (2002) provided examples showing that when
learners in school need to reconstruct their knowledge in order to make
progress, they may experience discontinuities in the curriculum. Tall argued that
such discontinuities are inevitable and should be explored rather than avoided.
Yerushalmy & Chazan (2008) used Tall’s construct of curricular discontinuities
and examined how the introduction of technology potentially alters the nature of
curricular discontinuities and how different technologies that can be used as
educational tools for exploration can also be used by curriculum designers to
alter the nature of the discontinuities that students face, without getting rid of
them. Whether the divergence of learning opportunities is the result of a certain
social-cultural philosophy, or of views concerning cognitive discontinuities, and
even if they are altered to comply with the conditions of specific personal or
innovative settings, curriculum developers are challenged to design a long-term
sequence of instructional materials to help teachers respond to such critical
curriculum developments. The design principles implemented in VisualMath
attempted to respond to the challenge by adopting a view of the domain and
representing it in a structure that is visible to its users, both learners and
teachers.

Adopting a perspective

The first design action in the representation of the domain was to adopt a
perspective of the subject. Its underlying assumption is that school algebra is
about functions and about structures. For the last two decades school algebra
had been under severe criticism, and as a result it was subject to reform
attempts. Several of these, including VisualMath, referred to as a “function
approach to algebra”. Function-based approaches tend to avoid defining
functions in a set theoretical manner, often proposes an early focus on
covariation of quantities and emphasize relationships between the tabular,
“algebraic,” and graphic representations of a function, at times with greater
emphasis on sketches that capture relationships by taking advantage of graphing
tools. This curricular change has led critics (such as Pimm, 1995) to argue that
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such approaches alter school algebra so drastically that it is no longer algebraic,
because algebraic structures and skills became secondary to what was usually
regarded as calculus approaches. In respond to this critic, VisualMath is
designed to use functions as the foundation for mastering algebraic skills with
understanding by all students.

Representing the structure

The second design action in the representation of the domain was to organize
the learning occasions in such a manner that would reflect the mathematical
structure and the pedagogical routes that the subject offers.

In “Getting Students to Function in Algebra,” Schwartz (1992) described the
learning occasions that any mathematical subject offers as actions that involve
objects and operations: “Every mathematical ‘occasion’ is an occasion for
attention to mathematical objects, the operations that can be carried out on and
with those mathematical objects and the ‘meanings’ we wish to ascribe to those
objects and those operations.” (p. 306) A given specific mathematical object will
likely have specific operations that can be carried out on it - for example, shapes
can be dilated, translated, rotated, sheared; functions can be transformed etc.
We therefore prepared two lists. One consisted of the mathematical objects
involved, in the form of types of functions that in symbolic structure are
required by the traditional algebra syllabus, such as linear, quadratic or
polynomial, exponential, rational, periodic. The other was a list of operations on
and with the objects.

The six operations included do not form an exhaustive list. Rather, they are what
Schwartz had called the “interesting middle:” (Schwartz, 1995) operations that
are important mathematical concepts and are appropriate and useful to learn as
part of function-based school algebra. The operations are: represent (a
function), modify (reforming the view or structure without changing the
function), transform (using operations to transform a function into families of
functions), analyze the change of a function, operate with two functions
(synthesizing new functions out of two different or identical functions), and
compare two functions. The two lists are distinct, and were therefore placed in
an orthogonal organization in a 2D matrix where each cell represents the
opportunities for learning resulting from the corresponding operation and
object. Each operation with an object can take place in symbolic, graphic, or
numeric representations (Figure 3).
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Figure 3: Conceptual map of function-based algebra

In most algebra curricula the study of the manipulation of expressions and of
methods leading to solutions of equations are recognized as the central body of
the required algebraic skills. In the map, one finds occasions to learn and master
algebraic skills under four operations’ columns: Modify (change the function’s
expression with a purpose), Transform, Operate (with two functions) and
Compare two functions. The following examples from the VisualMath materials,
together with references to our long-term research program, illustrate briefly
how the objects & operations organization has been used to meet the traditional
curricular requirements, to create occasions for learning algebraic skills with
understanding, to challenge traditional views of the algebra and to outline the
important mathematics that can be supported if different progression sequences
are considered.

Manipulating expressions. When modifying expressions, one creates learning
opportunities for the study of algebraic identities and of algebraic structures. In
a linked multiple-representation setting, expression can be modified upon a
direct transformation of its function graph. Symbolic skills would be required to
analyze the action and the resulted modified expression. For example, a
horizontal translation of the graph f(x) would result a new expression
representing f(x+k). In the terminology of the function, Simplifying would mean
restructuring an expression to produce equivalent expressions. It is the study of
operating on the symbolic representation of a function in ways that do not
change the function. In the VisualMath sequence simultaneous linked
representations provide feedback about any change in the expressions. Figure 4a
demonstrates three attempts to expand the given expression of the structure
A(x-Bx)x. Two attempts (rows 2 and 4) are mistaken while the third one is
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Figure 4a: Simplifying an expression

Figure 4b: Analysis of the difference between the given and the simplified expressions

correct although incomplete. The linear graph that represents the expression on
row 2 is visually prompting an absence of the quadratic term. The parabola
graph that represents the expression in row 4 suggests mistakes related to the
quadratic or to the linear terms (or to both). The difference operation between
two expressions would help to indicate more specifically the flaw in the
operation that the non-equivalent expression (Figure 4b). Further examples of
manipulations’ learning occasions and analysis of students’ practice can be
found in Yerushalmy (1991), in Yerushalmy & Gafni (1992) and in Yerushalmy &
Schwartz (1993).
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Solving equations

Moving along the column of Comparing two functions one can design
opportunities for learning equations and inequalities, and for learning
equation’s solution methods. Solving an equation or inequality is viewed as a
process in which the solver operates on the two compared expressions to
produce equivalent equations. In the VisualMath approach the solution is the
value of the variable for which each of the compared functions assumes the same
output. Graphically, the representation of a solution is the intersection between
the graphs of the two functions. This indication may act as feedback for the
correctness of the symbolic operation, but we have found (Yerushalmy &
Schwartz (1993).) that more important occasion for learning skills with
understanding occur if the practice is part of a sequence that assumes a major
role to functions and their graphs. For example, new ideas about the equivalence
of equations could be observed and discussed naturally if symbol manipulations
would occur in the context of transforming the graphs of the functions.

Interacting with the UnSolving example in Figure 5 (Schwartz 2011)
demonstrates it. Transformations (e.g., scaling, translation) of the graphs of
given functions’ comparison are just another way to produce new equivalent
comparisons. Transforming only one side of the equation and still keeping the
solution is obvious when treating the solution as the intersection of two graphs,
but quite surprising for all of us who learned that the only way to correctly arrive
to solution is “to do the same” to both sides of the equation. The dynamic setting
and the task were designed to raise primitive conjectures that then can be
generalized and proved as part of learning and practicing symbols’
manipulations. Examples showing why such operations have a chance to create
challenging mathematical inquiry in school algebra are analyzed in Chazan &
Yerushalmy (2003).
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Figure 5: Transformations of equation that yield equivalent equations (Schwartz 2011)

Setting up learning occasions of this type represents a change of focus and
possible change of order relative to the traditional assumption about algebraic
skills being the foundation for the understanding of functions.

4 The Design of Tools: Creating the Inquiry Setting

In reviewing the major challenges of adopting technology to support
mathematics education many point to exaggerated technological expectations
and ambiguous intentions about the roles of digital mathematical tools being
two serious obstacles to current attempts to improve math education.
Questioning the appropriate image of software tools has become a major
component in transformational designs. We attempted to design “tools for
learning mathematics” which is different from tools for “doing mathematics.”
Tools for learning mathematics have a pedagogic agenda, which may be very
limited or in the case of the some exploratory environments, quite broad and
can be used in many ways in different settings. We envisioned tools that would
allow inquiry as flexible as possible of and throughout as many as possible cells
in the map in both representations’ layers. Thus, the role of the present section
is showing why and how considerations related to the organization of
representations, objects, and operations in the map directed our design of
software tools for learning.
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Designing tools for studying representation.

Figure 6: Major possible modeling actions with MoveOn!

Designing tools for studying an object

Linear functions are usually selected as the starting point of algebra courses
because the symbolic representation is relatively simple. Its simplicity, however,
often leads to trivial design of instructional materials. Multiple interactively
linked representations and direct manipulations of each of the representations
that technology features, challenge this trivial image of the algebra of linear
expressions. For example, the design of translation tools feature systematic
change of symbolic expressions and of numerical values motivates the
development of manipulation and reasoning skills that are required to prove the
equivalence of the models Ax+C, D(x-B), and E(x-F)+G, and to propose the
usefulness and generality of the model E(x-F)+G. The design of the difference

Considering the crucial role of understanding functions’ graphs for the learning
of algebra structures and skills (demonstrated in Figure 4 and Figure 5), a
central design challenge was to understand the affordances of technology and to
design tools for operating graphically in ways that do not assume prior
knowledge of algebraic symbols and skills. The design of the MoveOn! modeling
microworld (Yerushalmy , Shternberg, Schwartz 2001) reflect this challenge.
The microworld encourages the creation of functions’ graphs, the
re-representation and analysis of graphs, the transformation and composition of
graphs. Only graphs are provided to gradually explore and understand the major
qualities of models of temporal phenomena: graphical presentation of time
analysis of hand motion and motion synthesized of two functions’ graphs (x(t)
and y(t) composed to y(x) as in Figure 6). These types of graphs were designed
to support a learning sequence that would normally start from body motion
graphs, visual analysis of the motion traces, synthesizing visual signs (icons) to
create a motion experiment and back to comparing the synthesized motion with
the recorded hand motion. It was an important challenge of the design to
scaffold the linkages within these types of representations.
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operation tool described above (see Figure 4) challenged the notion that taking
the function approach mistakes can be easily detected and observed but also
analyzed and corrected. A constant function line (other than zero) indicates that
a mistake may have occurred in the computation of free terms; a slope line
indicates a mistaken result in the linear terms. The design of the comparison
tools (as the one in Figure 5) in a way that allows fixating the point of
intersection and graphically dragging one of the two lines, presented a challenge
to the “mythical view of balance” whereby the solution of the equation remains
true only if both sides change in the same way.

Designing tools for studying an operation

In the traditional algebra sequence, analyzing how a function changes is not a
focus of attention, and it is treated mainly in calculus courses. In VisualMath an
understanding of rate of change is assumed to be essential for understanding
algebraic objects and operations in any representation. Therefore, the design
had to challenge the assumption that rate of change is taught to students who
completed algebra course and are skillful in symbolic manipulations. We
developed tools for exploring rate of change based upon other familiar resources
of the learner such as lexical descriptors ( e.g. increasing, decreasing, and
constant) to describe a function and its inclination, visual objects as the “stair”
that represented difference measured along a constant horizontal interval (delta
x) and operations for analyzing differences numerically. These terms helped
reduce stories to function-related language as a step in modeling and solving
problems in context ()The various simulation tools and students’ learning are
further described in Yerushalmy & Shternberg 2001, Shternberg & Yerushalmy
2003). The “stair” and the first and second differences which are part of the
“Gym” interactive activity (Figure 7) have been studied by middle school
students in order to generate and answer questions about the uniqueness of the
linear function and expression. The same activity is studied by Calculus students
familiar with the rules of derivatives but lack understanding of its meaning.
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Figure 7: Tools to study rate of change in an interactive activity

In Yerushalmy (1999) I explained why achieving coherence between the
educational vision and the tools is the most important reason for investing in the
development of dedicated learning tools. Chazan (1999) pointed out that
understanding the perspective upon which an instructional domain is organized
is the greatest challenge for teachers. And in a different context, Jimmy Wales
(2011, at Wikimania) pointed out that the worst problem faced by wiki is that the
design of the tools does not reflect the norms of the wiki community. Indeed, the
meta-design principle of visible coherence between the conceptual map of the
subject and the pedagogy of mathematical inquiry has been our leading
principle in designing the learning tools.

5. The Design of Tasks: Unpacking the Learning Occasions

Another design challenge was to design learning sequences that can support the
algebra class inquiry along the learning occasions identified in the map.
Designing learning opportunities for the inquiry of linear, single-variable word
problems in context illustrates the research and development process involved
in the unpacking of an occasion (a cell in the map) and how it led to the design
of tasks.

In the function approach, linear, single-variable problems in context are
occasions created by comparing linear functions in multiple representations.
Traditionally, the same problems are organized into a learning unit, ordered by
the complexity of the equations to be manipulated and solved. The two views do
not match exactly. Attempting to map this subject in a way that presents the
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Figure 8: Eight problem situations (adopted from Yerushalmy & Gilead 1999 p. 194)

This mapping idea makes the design of the tasks for inquiry manageable because
the number of problem types is reduced and ordering by complexity is based on
the structure of the situations as represented by linear functions. The tasks
involve practicing the required skills and provide opportunities that are
mathematically interesting and manageable. On another level, the tasks are
aimed at promoting the heuristics of problem solving (e.g., the study of the
differences and similarities between problems) and strategies of inquiry (e.g.,
generalizations or counter-examples). Viewing the 8 problem situations
sequence through dynamic lenses help to understand the mathematical
similarity: linear transformation of scaling, translations and reflections (in
horizontal or vertical lines) would turn a given model (one of the 8) to any of the
other models. The technology acts here as a cognitive tool offering a way to
experiment the generality of an example and its representativeness of the

view of the VisualMath mathematics we offered (Yerushalmy & Gilead 1999) a
model consists of a representation of the mathematics of relations between
linear functions. We identified eight main problem situations derived from this
representation. Each represents two functions: f and g (Figure 8). The eight
graphs differ structurally (in the inclination and the simultaneity of f and g) and
found to challenge problem solvers with different cognitive complexities (Gilead
& Yerushalmy, 2006). With some limitations, this organization allows the
mapping of most linear word problems in algebra.
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domain, and to learn similarity among problems and the solution strategies
derived from that. Below is an example of a short learning sequence designed
along this idea.

The following four story problems are similar to questions frequently found in
algebra textbooks. It is most likely that the problems would appear in this order
that represents increased complexity of the story details. It is also reasonable to
assume that in a traditional algebra textbook each of the problems would
present different numerical given quantities in order to provide further
computational challenge.

Problem 1: The distance of Jane's trip
was 100 kilometers. In the first part
of her journey she rode at a speed of 16
kilometers per hour, then reduced
her speed to 12 kilometers per hour.
The duration of the second part of the
journey was one hour shorter than
that of the first part. After how long
did Jane reduce her speed? What
were the distances of the two parts
of Jane's trip?

Problem 2: Christina left home and
rode her bike to the nearest town at a
speed of 16 kilometers per hour.
When she got there, she turned back
home, riding at a speed of 12
kilometers per hour. On the way
back, she stopped at a motel and
decided to spend the night there,
although she biked one hour less than
she did in the morning. The distance she
travelled that day was 100 kilometers.
How long did it take Christina to
reach the town? What was the
distance from the town to the
motel where she stopped on the
way back?

Problem 3: The distance between two
cities is 100 kilometers. Steve left
town A at a speed of 16 kilometers
per hour in the direction of town B.
One hour later, Beth started out from
town B toward town A, riding her bike
at 12 kilometers per hour. They both
rode until they met. How long did
Steve ride until he met Beth? At
what distance from town A did the
meeting take place?

Problem 4: A bicycle rider rode from
town A to town B at a speed of 16
kilometers per hour. A second
bicycle rider started out one hour later
from a village located on the road
connecting town A and town B, and
rode at a speed of 12 kilometers per
hour. The two riders met at town B.
The sum of the distances they travelled
is 100 kilometers. How long did it
take the first rider to ride from
town A to town B? What distance
did he ride?

The four problems are integrated into a task in the unit of linear functions of
VisualMath (Figure 9). To support structural similarity, the four problems in the
task share the same quantities and all four could be solved by the same
equation: 16x+12(x-1) = 100 where x is the time travelled by the first biker. The
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Figure 9: “Reflections on Trips” requires reflection on similarity among situations

This example of zooming into a single cell in order to analyze the learning
occasion illustrates the challenge of redesigning the pedagogy that would make
the new epistemological assumptions relevant to algebra teaching and learning.

task is built upon a dynamic distance-time diagram where a given model consist
of two linear functions in intervals can be constructed by alterations of a given
model. The four graphs of distance as a function of time are identical in the f(t)
function but different in the g(t) function.

The data given for the second interval function is what makes problem 3 the one
to solve immediately, while the other three seem to require further data
supporting formulation of g(t). The solution of problem 3 (formulating f(x) and
g(x) and computing the intersection of the two functions’ segments) then
supports the missing data in the rest of the problems that can then be modeled
and solved. Please note that this distinction between problem 3 and the rest is
relevant only for function-based algebra approach where students attempt to
construct a comparison of two functions of a single variable. Once one identifies
and explains the similarity among the problems (using the interactive tool) the
challenge is to use the similarity in order to decide which problem can be solved
independently and how it can inform the attempts to solve the rest of the
problems. Thus, by presenting a collection of problems that can be identified as
similar throughout the interactive graphical alterations, the challenge of solving
each of the word problem turns into an exercise in a problem-solving heuristics
known as “find a similar simpler problem” (Polya, 1957).
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6. The Design of Textbooks

Textbooks provide guidance for teachers about what should be content of study
and how it should be learned, and they organize the content for students.
Therefore, textbooks remain essential mediators between the vision and the
teaching. But a bound book that assumes a uniform progression for all students
may not best serve the development of ideas through guided inquiry. "Learning
by the book” refers worldwide to passive learning, and "teaching by the book"
often refers to a teaching style that regards the textbook as a major authority on
the content and the knowledge that students should possess. We envisioned the
textbook as a mediator that encourages engagement: of the teacher to plan the
instruction in a variety of ways, and of the students, by providing and
demanding interactivity. In the current technology of eBooks, it is assumed that
hypertext, multimodal reading, and interaction with embedded dynamic
diagrams and tools are possible. Years before hypertext and digital texts were
available, we sought designs that provide incentives for multi-modal and
non-sequential reading. The engagement with tools was then designed to be part
of the book, and tasks used a variety of formats to support conjecturing and to
organize conjectures. I focus here on the design process of an eTextbook – the
VisualMath Function eBook, which was designed in 2001-4 as a second edition
of the printed VisualMath algebra books (Yerushalmy, M., Katriel, H. &
Shternberg, B. 2002/4).

The museum view was a leading image in the design of the VisualMath Function
eBook. The views borrowed from the museum setting and used to form our
guided inquiry vision were consistent with the distinction Kress and van
Leeuwen (1996) made to describe linear and nonlinear texts. They compared
linear texts to “an exhibition in which the paintings are hung in long corridors
through which the visitors must move, following signs, to eventually end up at
the exit,” and non-linear texts to an “exhibition in a large room which visitors
can traverse any way they like… It will not be random that a particular major
sculpture is placed in the center of the room, or that a particular major painting
has been hung on the wall opposite the entrance, to be noticed first by all
visitors entering the room” (p. 223).

The Design of the exhibits

In its current stage the VisualMath eBook accommodates two exhibit halls: the
linear and the quadratic. The workshop area provides general-purpose tools for
doing mathematics. The museum could accommodate additional exhibits, each
one a row on the map – a mathematical object. Entering the hall, the tour leads
to various galleries chosen along the columns of the map – the mathematical
operations. Each gallery consists of a central piece that reflects the essence of
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Figure 10: The Quadratic Exhibit hall

The Quadratic Exhibit hall (a) includes 10 Galleries and (b) A Workshop area;
the (c) Transformation Gallery consists of: (c1) A Central piece and (c2) Three
Rooms.

This is the “backbone” of the book, which was designed to correspond to the
structure of the 2D double-layered map. It contains required content for 7-10th

grade algebra and for the topic of functions in Israel, and it is constructed
following the approach of technology-based guided inquiry. Within this
mathematical structure and the inquiry perspective we adopted, the major
challenge of the design remained the tasks.

Planning the tasks involved redesigning those tasks that were already included
in the printed VisualMath textbooks and reengineering the technology as each
activity was devised with the interactive diagram as its core. There was yet
another challenge that involved changes to the solidly defined structure. Because
there are too many galleries, and too many rooms in each gallery for the visitor

the mathematical operation at hand and a few (2-3) separate rooms (Figure 10).
Each room accommodates the “art,” but the design attempts to engage the
visitor in different ways: there are tasks (to learn problem solving), tools
(hands-on explorations within limited scope of the gallery), and exercises (to
improve skills). To keep the visitors alert and to have them come back, the art is
changed frequently: exercises, data, and diagrams may be randomly changed by
the curator’s directions, but the similarity to other art on display is always
retained.
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to become engaged with each one of them separately, we had to reduce the
number of galleries. For example, in the linear exhibit, assuming that it provides
a first acquaintance with the approach, and based on the requirements of the
syllabus, we paid attention to five operations: representing, analyzing,
modifying, operating with, and transforming.

Figure 11: The Linear Functions Exhibit hall

Designing the Visit: Three Quadratic Tours

There are different ways of visiting the exhibition hall, and museum guides
provide different tours. Most visitors may require assistance, although there are
those who would prefer to study the art by wandering around on their own and
reading the information that appears next to the exhibits. There may be others
who have already heard and read about the recommended tours or are revisiting

We organized the five operations into six galleries (Figure 11). In the quadratic
exhibit we included ten galleries. Seven of these relate directly to the five
operations (comparing, analyzing, modifying, transforming, and operating
with), and three are organized around three central quadratic models: motion in
constant acceleration, area, and economic phenomena. Whereas each of the
operation galleries includes tasks in context, the emphasis in the modeling
galleries is different, and although they were designed with the mathematics of
quadratics in mind, their focus is on the phenomena such as kinematics or
max/min economic models. The next few examples from the Quadratic unit
(Figure 10) should illustrate central design intentions that attempt to make the
“museum image” visible.
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Figure 12a: Quadratic growth Figure 12b: Motion at changing speed

the museum and would like to do it their own way. After a gallery has been
chosen, the guide may or may not leave the visitors alone for various periods of
time. The guide may leave the central piece at the entrance to be explored later,
and lead the visitor directly to some other rooms. The guide may also suggest
that before visiting the exhibit, guests should enter the tools shop to try out the
interactive environment that would later help them understand the art. The
design of the eBook challenges teachers in a similar way. As in the museum, they
start as first-time visitors, exploring the domain of knowledge. Then, using the
textbook to plan their course and help their students, they assume the role of the
tour guide. Most likely, a teacher in a classroom setting would initially guide
students closely, but would ask the students to take their time, use the
interactive tools, or take notes. After teachers have accumulated some
experience in the gallery and feel secure, they may consider suggesting that
groups of students choose their own routes.

Assuming that visitors are already familiar with the three representations of
functions, at least three conceptual guided tours are suggested for teaching the
Quadratic unit: The analyzing tour, the solving (comparing) tour, and the
algebraic structure (modifying and operating) tour.

Analyzing

A teacher could plan the course of the analyzing tour based on the concept of
non-constant rate. This could be achieved by first learning about rates (Figure
12a) or by first focusing on the motion as a model of constant acceleration
(Figure 12b) .

Solving

The students have already learned comparisons of linear functions and have an
idea of equivalent comparisons, therefore an alternative focus can be on
equations. The tour starts with comparisons of quadratic expressions (Figure
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Figure 12c: Comparisons and operations Figure 12d: Solving equations

Figure 12e: Products of linear functions Figure 12f: Graphic design

12c) continuing with emphasis on operations on equations and inequalities
(Figure 12d) , and on the concept of equivalence. The solving gallery provides
tasks to be used for experiencing and practicing how to solve equations. Many
tasks in various other galleries require solving and could be used to enrich the
visit.

Algebraic structure

The algebraic structure tour could begin with the investigation of binary
products of linear functions (Figure 12e) or with the area modeling unit (Figure
12f).

The quadratic structure has three different forms (product, polynomial, and
vertex), and the manipulations required to arrive from one to the other are an
important part of understanding quadratic expressions. At least four galleries
would be visited on this tour: equivalent expressions (Figure 12g), adding
(Figure 12h), multiplying, and transforming (Figure 12i).

Yerushalmy, M. (2013) Designing for Inquiry Curriculum in School Mathematics.
Educational Designer, 2(6).

http://www.educationaldesigner.org/ed/volume2/issue6/article22/ Page 23



Figure 12g: Equivalent
expressions

Figure 12h: Adding functions Figure 12i: Graph
transformations

It is reasonable to assume that the same teacher would make different choices
based on the different settings and resources that students bring to the course.
For example, if the students’ previous experience in algebra does not include
thorough familiarity with functions, it may be better to start with modeling
graphic designs based on the known geometry of rectangles. Other teachers
reported that they had augmented the rate tour by visiting the linear room of the
rate gallery, yet others alternated the order in which they visited the galleries,
and selected the exercise rooms in each gallery as the only ones to visit, because
they were able to use the dynamic diagram designed for practicing as a tool for
exploration under their guidance, obviating the need to go through the other
rooms.

These and other teacher engagements in planning a sequence that is not
unequivocally defined require familiarity with and understanding of the various
units of the book. The essential pedagogical understanding is that of the
organizing map: objects, operations, representations, the learning occasions
involved, and the understanding of the exhibit map as reflecting various settings
for optional formats of guidance.

Personalizing the tour further

So far I described affordances designed to support teachers in designing their
plot for the course and in guiding the inquiry. Yet, there are other design efforts
to support the museum experience and the inquiry pedagogy; efforts that are
related to the ways that students can bring their personal views, resources and
imagination when engaging with the mathematical text.

Reading mathematical text as reading good prose of any sort demands a sense of
immersion and sinking into a mode of “disappearance” into the book. Young
(2007) describes the interactive reading as being an internal slow conversation
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about the ideas carefully crafted by the author. Reading the VisualMath
multimodal text – explore or solve - often consists of cycles of inquiry either
individually or with classroom mates. Major design efforts invested in offering
Interactive Diagram that provide opportunities for presenting the authors’ idea
to be the subject of the reader’s inquiry. An Interactive Diagram (ID) is a
relatively small and simple software application (applet) built around a
pre-constructed example. An ID includes the characteristic features of a static
diagram and of a tool. The diagrams that are centered on an animated race
simulation offer different opportunities for learning. The examples are drawn
from the long term research program carried by Naftaliev and Yerushalmy since
2007 to the present . I would shortly demonstrate analysis of students’
explorations carried with two types of interactive diagrams: narrating and
elaborating.

Narrating IDs are designed to be the principal delivery channel of the activity’s
message. Similar to the narrator’s voice, narrating IDs are designed to call for
action in a manner that supports the construction of the principal ideas of the
task. Whereas elaborating diagrams are designed for the students to approach
and explore a variety of occurrences, narrating diagrams are intended to help
students articulate a narration of appropriate interpretations. Such a narration
defines the structure for the available options for exploration. Although it
provides tools that promote inquiry, it also sets the boundaries that can guide
inquiry and provide a framework and narration of the story to be learned in the
process of working on the task.

Discovering the connection between a constant distance-time function graph
and a lack of motion (documented in Figure 13) was made possible by activating
the animation that is hot-linked to the animated graph. The hot-link contributed
to discovering the noticeable visual surprise about the static dot, but linking the
seven dots to the appropriate seven graphs was more difficult. The growth of a
naïve conjecture and the cycles of conjectures and refutations that followed are
based on the designed conflict between the two animated representations: one
of actual motion and the other that represents change of position in time.

Elaborating interactive diagrams are designed to provide means for students to
engage in activities that lead to the formulation of a solution in different ways
and to afford meta-cognitive actions: compare the possibilities, analyze each and
reflect upon their choices.
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Figure 13: Students solving a motion problem formulated as Narrating Interactive Diagram

The video can be played from the online version.

Figure 14: First attempts of three groups to explore a problem given as an Elaborating
diagram

Naftaliev (2012), summarizing her analysis of students’ solutions with the “20
meters” problem and other elaborating diagrams, argues: “In the elaborating
diagram, understanding the generic nature of the animated example advanced
with the needs and choices of the students to explore a variety of unfamiliar
representations and to interpret the links that were often designed to create
uncertainties.” (p. 166) The various linking tools and representations in the

Three groups of students attempting to solve the “200 meters” race problem
chose to concentrate on different representations and linking tools (Figure 14):
one group analyzed the traces that were left throughout the run, others attempt
to understand the information that can be driven from the numerical table while
others spent longer time on attempts to explain the geometric behaviour of the
graphs and it relation to specific moments along the race.
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Elaborating diagram lead to different problem-solving processes and a variety of
solutions. The differences between methods were manifest in the variety of the
significant items in the examples, in the representations students chose to work
with, in the order of preference of the various representations, in the choice to
use or ignore the included tools, and in the attitude toward the various aspects
of the motion process. The noteworthy finding in the problem-solving processes
exhibited by students with Narrating diagrams is the unusually extensive mental
work, encompassing an entire cycle of logical argumentation (raising
assumptions, deriving conclusions through conjectures and refutations) without
the multiple replaying of the animation that is normally involved in solutions
with interactive tools (Naftaliev & Yerushalmy, to appear).

6. Concluding Notes about Incompleteness

There are many ways of describing such a long process of design and
development of an innovative curriculum. But the story that worked for us and
that is less frequently told is the challenge of designing a coherent conceptual
structure for secondary school mathematics, the need for defining a
mathematical view, and the need for designing a conceptual organizing map that
can guide the design of materials. The restructuring of the mathematical subject
is the design story that guided us in the development of the VisualMath
curriculum. The design of the organizational map was our major challenge of
designing the algebra inquiry; it guided us in posing questions of order, in
asking how known algebra tasks may be based on new resources and in finding
the relevance of traditional tasks that do not seem to be the natural subject to
address in an inquiry environment of the type that we envisioned. We started by
a set of thought experiments, then prepared a pilot with users followed by cycles
of research and design of technology tools, tasks, instructional materials in the
form of textbooks, and teachers’ development programs. Many aspects have not
been discussed here, which would have received greater emphasis had I chosen
to describe the VisualMath project by means of two other stories.

One of the stories focuses mainly on innovations in technological resources:
VisualMath started with the first PCs that appeared on the market. Over the
years graphic capabilities and tangible interfaces have been developed, followed
by the Internet, the Web, and mobile devices. These technologies were not
developed for educational purposes, but as shown in Figure 15, they ended up as
major players in education reform. Our ideas and the design of VisualMath
evolved continually in parallel with the new technological capabilities, especially
affected by three landmarks: stand-alone microworlds, interactive Web-based
textbooks, and mobile learning.
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Figure 15: Worldwide innovations of technological resources that underlie the VisualMath
development

Yet another approach to describing the development of VisualMath would be to
tell the story of the design of mathematical pedagogical practices and of the
development of instructional patterns that facilitate guided inquiry. The focus of
such a description would be on the design of tasks, and it would dwell on the
conceptual challenges faced by curriculum developers aiming to support
would-be “constructivist teachers” by challenging their beliefs about cognitive
processes of mathematical thinking and about their pedagogical practices. It is
the challenging feeling of incompleteness based on coherent organization and
principles that typify the nature of guided inquiry, and it is probably reflected in
the incompleteness of the story told here.
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Footnotes

[1] Curriculum cannot be developed by a single person. VisualMath was
developed by a team of devoted educators including graduate students at
the University of Haifa, school teachers and students. It was the result of
a long-term partnership with the secondary mathematics team of the
Center for Educational Technology (CET), Israel http://cet.org.il/pages
/About.aspx
The development is based on long-term partnerships with Judah L.
Schwartz and Daniel Chazan.
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