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Abstract
This paper illustrates the development of a prototypical instructional sequence on
instantaneous speed for 5th grade in terms of the researchers' own learning
process. The development of this instructional sequence in a design research
project is tracked from the startingup phase through three subsequent design
experiments in terms of a framework that encompasses both the design decisions
and the theoretical and experiential foundations for those decisions. Such a
framework of reference may take the form of a local instruction theory that
offers a rationale for the instructional sequence on the basis of which teachers
and educational designers may adapt the instructional sequence to their own
needs.

Introduction
In reaction to the advent of the information society, some researchers argue there is a
need for a new and innovative science and technology education in primary school
(Gravemeijer & Eerde, 2009; Keulen, 2009; Léna, 2006; Millar & Osborne, 1998). With
the advent of ubiquitous networked computing devices connected to sensors, the
importance of understanding dynamic phenomena in every-day life is growing. Key to a
better understanding of dynamic phenomena is the concept of instantaneous rate of
change. In the context of primary school we prefer to speak of ‘speed’ because students of
this age will not have developed the level of abstraction associated with the use of ‘rate of
change’ in the literature. Currently, instantaneous speed is not part of the primary school
curriculum in the Netherlands; conventionally, instantaneous rate of change is taught
first in a calculus course in late high school or college. To meet the requirements of the
information society, however, one may argue for teaching this topic much earlier.

Because design research is well-suited to explore the teaching of topics in earlier grade
levels than they are usually taught (Kelly, 2013), we use this research methodology to
explore how to teach instantaneous speed in grade five. Design research may take various
forms. The type of design research we have in mind here focuses on learning processes
(Gravemeijer & Cobb, 2013). In this type of design research, special attention is paid to
the origin and development of the theoretical claims through a process that, to a large
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extent, comes down to documenting both the actual educational-design practice and the
researchers' own learning process.

Design research does not follow a (quasi-)experimental research design. Instead, the
process by which claims are produced has to justify its results in a more direct manner. In
relation to this, Smaling (1990) borrows ‘virtual repeatability’ from ethnography as an
alternative for the prevailing criterion of repeatability. He links this methodological norm
of virtual repeatability to the criterion of ‘trackability’. Outsiders should be able to retrace
the learning process of the researchers in such a manner that it becomes virtually
repeatable for them. This then would allow them to judge the credibility of the claims for
themselves.

Characteristic for this type of design research is that the design revolves around the
students' mental activities. Here we may think of Simon’s (1995) notion of a hypothetical
learning trajectory, which describes the anticipated mental activities the students will
engage in when they participate in the envisioned instructional activities, and how those
mental activities relate to the learning goals. It is the design, trial, evaluation, and
revision of a series of such hypothetical learning trajectories that is at the heart of the
learning process of the designers. The consecutive hypothetical learning trajectories are
reflexively related to the so-called local instruction theory (LIT). The LIT constitutes the
rationale for the instructional sequence that is being developed and consists of a theory
about a potential learning process for a given topic instantiated by that instructional
sequence, and the means of supporting that process. The researchers start out with a
conjectured LIT, which is revised and adapted during multiple design experiments.

In this paper we describe such a learning process to illuminate how the theory-driven
nature of design research interacts with educational design practices. In particular, we
elaborate the grounds for justification of the claims put forth in the LIT by tracking the
theoretical and experiential foundations of the design decisions we made during the
design research. Before we describe our own learning process, however, we detail the
approach to design research we used and the underlying process of validating and
generating new explanatory conjectures.

Design research
Figure 1. Overview of the design research project. (Beer, Gravemeijer & Eijck (2015))
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1. In the preparatory phase, the LIT is (re)formulated and used to design an
instructional sequence.

2. Subsequently, that instructional sequence is tried in a teaching experiment that
consists of a sequence of micro design-cycles of (re)developing, trying out,
evaluating, and adapting instructional activities and materials (Figure 1, blue
cycles).

3. Next, a two-step retrospective analysis is carried out that is modeled after Glaser
& Strauss’s (1967) comparative method. In particular, the elaboration of Cobb &
Whitenack (1996) on this method was used. After formulating conjectures about
What happened? during the teaching experiments and testing these conjectures
against the data collected, a second round of analysis is carried out by
formulating conjectures about Why did it happen?. These conjectures are also
tested against the data collection.

The results of the retrospective analysis are used to adapt and improve the LIT, which is
input for the next design experiment.

A standard goal for classical educational research is to establish whether intervention A
works better than intervention B. The goal of design research, however, is quite different.
Here the goal is to generate a theory on how the intervention works. This distinction may
be linked to two conceptions of causality, as described by Maxwell (2004): a regularity-
oriented causality, and a process-oriented causality, respectively.

The former, which looks at the frequency with which an assumed cause is followed by a
presumed effect, is typical for quantitative research in education. In contrast, the kind of
research we are discussing here employs a process-oriented perspective on causality,
which “deals with events and the processes that connect them; it is based on an analysis
of the causal processes by which some events influence others.” (Maxwell, 2004, p. 5) It is
based on the idea that causation is a complex process that is dependent on a combination
of variables and circumstances. In principle, causal claims could be based on a single
case. When aiming at LITs, the unit of analysis will not be just one student but the
classroom as a whole. As a result, to justify that there is a causal relation, narrative
explanations can be used (Abell, 2004). Applied to educational settings, Maxwell (2004)
argues that to “develop adequate explanations of educational phenomena (…), we need to
use methods that can investigate the involvement of particular contexts in the processes
that generate these phenomena and outcomes.” (p. 7) We may argue that design research
deploys two such methods: validating existing conjectures and generating new
explanatory conjectures.

We followed the approach to design research outlined in Gravemeijer & Cobb (2013) in
order to develop a LIT on teaching instantaneous speed in 5th grade. This LIT, and the
prototypical instructional sequence by which it was instantiated, was elaborated, adapted,
and refined in three macro design-cycles called design experiments (Cobb, 2003;
Gravemeijer & Cobb, 2013) (Figure 1). A design experiment has three phases.
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In each design experiment, the conjectures about the learning process and the means of
support are substantiated in the instructional activities and materials that are developed
and refined in multiple micro-design cycles during the teaching experiments phase.
Conjectures that are confirmed by the students’ actual learning process remain part of the
LIT and are tried and refined again in the next design experiment. As a result, conjectures
are confirmed or rejected in multiple different situations, offering a form of triangulation
that adds to our understanding of students’ learning processes in terms of these
conjectures. Those observations enabled us to develop some theories about the
mechanisms that were at play here.

In addition to this, new explanatory conjectures are generated through abductive
reasoning, which is to “rationalize certain surprising facts by the adoption of an
explanatory hypothesis” (Fann, 1970), allowing us to focus on causal processes that we
did not anticipate in the LIT. A surprising fact is an indication that our understanding of
the students’ learning processes did not match the actual students’ learning processes; it
suggests a gap in our theory. To fill that gap, we select data during the retrospective
analysis that allows us to focus on what happened during the unexpected event to explore
plausible hypotheses of why it happened. By detailing our learning process, we may show
why and how we generated new explanatory conjectures.

Interwoven development of the LIT and our own learning
process
In this section we describe the development of the LIT to illuminate our own learning
process during the development of an instructional sequence on instantaneous speed.
However, given the iterative and interventionist nature of design research, one of the
challenges of design research is “to characterize the complexity, fragility, messiness, and
eventual solidity of the design and doing so in a way that will be valuable to others.”
(Barab & Squire, 2004, pp. 3–4). Because it is almost impossible to give a full and
complete account of one's learning process, we focus on the main learning moments and
we will briefly summarize what we learned after each design experiment. We start by
elaborating on the starting points both in terms of our own perspective on learning as
well as in terms of developing the initial LIT from that perspective.

Forming our initial ideas

Our own perspective on educational design

Beyond a general commitment to a social-constructivist perspective on learning, we
subscribe to the theory of realistic mathematics education (RME) (Gravemeijer, 1999;
Treffers, 1987). Central to RME theory is the adage that students should experience
mathematics as the activity of doing mathematics, and should be supported in
reinventing the mathematics they are expected to learn. In relation to this, three
instructional design heuristics are formulated: guided reinvention, didactical
phenomenology, and emergent modeling (Gravemeijer & Doorman, 1999). According to
the guided reinvention heuristic, a route has to be mapped out that allows the students to
(re)invent the intended mathematics by themselves. Here, the designer can take both the
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history of mathematics and students’ informal solution procedures as sources of
inspiration. In the case of speed, history shows us that intuitive notions of instantaneous
velocity preceded the more general conception of instantaneous speed as the limit of
average speeds on increasingly smaller intervals. This suggests trying to build on this
intuitive notion of instantaneous velocity. The choice of guided reinvention as our point
of departure is intertwined with the way we frame our goals. Our primary goal is for the
students to develop a framework of mathematical relations, which involve co-variance,
tangent lines, rise-over-run, and eventually, speed as a variable.

The didactical phenomenology heuristic advises one to look for the applications of the
mathematical concepts or tools under consideration, and analyze the relation between the
former and the latter from a didactical perspective. In this case, the phenomenon of the
speed of water rising in the context of filling glassware comes to the fore as a suitable
point of impact for the reinvention process. The didactical phenomenology also advises a
phenomenological exploration to ensure a broad conceptual base. However, the small
number of lessons did not allow us to do justice to this idea.

The emergent modeling design heuristic asks for models that can have their starting point
in a model of the students’ own informal mathematical activity, and can develop into a
model for more formal mathematical reasoning. Key in this transition is that the
students develop a network of mathematical relations, while acting with the model. In
this manner, the model may begin to derive its meaning from the mathematical relations
involved, and may start to function as a model for more formal mathematics reasoning.
In our case, the model may loosely be defined as ‘visual representations of the filling
process’. These representations may first come to the fore as models of water heights at
consecutive time points, and gradually evolve into a model for reasoning about the rising
speed. We used the underlying idea of a dialectic process of symbolizing and meaning
making, in which the symbolizations and the corresponding meaning co-evolve, to
formulate the preliminary LIT in the starting-up phase.

Startingup

This section is a summary of the results and findings presented in Beer (2016).

We started by reviewing the literature on primary-school students’ conceptions of speed.
We found that both in this literature and in the primary curriculum, speed is mostly
limited to average speed in the context of motion and described by a ratio; instantaneous
speed is not mentioned. As instantaneous speed is conventionally first taught in a
calculus course, we therefore widened our review to the literature on teaching calculus-
like topics earlier in the mathematics curriculum than calculus is conventionally taught.
Most of these initiatives used computer simulations and graphs: this enables students
without much algebraic skill to reason about change (Kaput & Schorr, 2007; Stroup,
2002). Exemplary is Stroup’s (2002) ‘qualitative calculus’ approach. Stroup critiques the
conventional instruction of rate, which treats intuitive qualitative understanding of rate
merely as a transitional phase towards a ratio-based understanding of rate, and he argues
that developing a qualitative understanding of rate is a worthwhile enterprise in and of
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itself. We decided to aim at expanding on this approach by supporting 5th graders in
developing both a qualitative and a quantitative understanding of rate.

In our search to develop a conception of instantaneous speed while circumventing the
complex process of taking the limit of average speeds we looked at the historical
development of the concept of instantaneous speed. Long before a formal mathematical
definition, an intuitive notion already existed (Doorman, 2005). Around 1335, William
Heytesbury defined his intuitive notion of instantaneous velocity as:

“a nonuniform or instantaneous velocity (…) is not measured by the distance
traversed, but by the distance which would be traversed by such a point, if it
were moved uniformly over such or such a period of time at that degree of
velocity with which it is moved in that assigned instant.” (From: Heytesbury
(1335) Regule solvendi sophismata, as cited in Clagett (1959, pp. 235–237)).

We assumed that the students’ intuitive notions are close to this historical notion. We
therefore formulated a LIT in which we aimed at helping the students to explicate and
expand these notions.

We chose the context of filling glassware over the motion context, as we feared that the
latter might bring with it unanalyzed terms and procedures. We can trace the origin of
this context back to the experienced educational designer Malcolm Swan, who used it in a
secondary textbook on functions and graphs (Swan, 1985). We conjectured that the
students would come to realize that the speed with which the water level rises in a
cocktail glass changes at every instant, and that this speed is continuously diminishing.
Building on this insight, the students would come to understand how the shape of a
‘height-time’ graph relates to the rising speed in the glass. By discussing the curved shape
of this graph and how it relates to the continuously changing speed, we would have a
starting point for deepening their understanding of instantaneous speed.

Preliminary oneonone teaching experiments

Before elaborating those ideas further, we carried out a series of one-on-one teaching
experiments with nine above average performing 5th graders—which we reported on in
detail in Beer (2016). We developed a short instructional sequence with the same
activities with a highball glass (a cylindrical glass), a cocktail glass, and an Erlenmeyer
flask in a computer simulation (Figure 2). For each glass, the students were asked to:

turn the glass into a measuring cup by dragging hash marks to the right place on
the glass (see Figure 2 and Figure 3, left hand side),
evaluate their solution using the computer simulation,
draw a graph of filling that glass, and
again evaluate their solution using the simulation (see Figure 2 and Figure 3,
right hand side).
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Figure 2. Computer simulation of filling a highball glass

Explore online at https://heerdebeer.org/DR/DE0/software/longdrink_smal.html

Figure 3. Computer simulation of filling a cocktail glass

Explore online at https://heerdebeer.org/DR/DE0/software/cocktail.html

The teaching experiments showed that the students found the linearity of the process of
filling a highball glass self-evident; they spontaneously described this process with a
linear graph (Figure 2). When carrying out those tasks for a cocktail glass, however, many
students initially fell for the so-called linearity illusion (Bock, Dooren, Janssens, &
Verschaffel, 2002). Most students made a linear-gauged measuring cup of the cocktail
glass. But when they saw a cocktail glass fill up, they quickly realized that the filling-up
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We may briefly summarize what we learned:

Conceiving filling a highball glass as a linear process appeared self-evident for
the students.
This was also the case for the linearity of the graph.
With the cocktail glass they initially fell for the linearity illusion, but when they
saw the simulation, they realized that the rising of the water level slows down.
They could not draw the correct graph.
They seemed to appreciate the curve, but could not explain it.

Design experiment 1

was not linear. They could relate the decreasing speed to the increasing width of the glas,
arguing that the speed decreases because of the increasing width of the glass. In line with
this realization, the students accepted the computer-drawn curve as a better graph for
describing filling the cocktail glass than their own hand-drawn straight-lined graphs.
They could not, however, explain the curve. Nor could they come up with such a curve by
themselves.

In the first lesson of the teaching experiments of design experiment 1 we tried to imitate
the starting-up phase by asking the students to make measuring cups from the highball
glass, the cocktail glass, and the Erlenmeyer flask, and evaluate their work by filling up
the glasses in the computer simulation. See student materials (Figure 4).

Based on the one-on-one teaching experiments, we expected that the students would have
no trouble with the highball glass and would apply the same linear prototype to the
cocktail glass. Once they had observed it fill up, they would realize that it is a non-linear
situation and relate the decreasing speed to the increasing width of the glass, while
formulating the relationship its width and the speed. Hereafter, the students would be
able to coordinate water height and volume.
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Figure 4. Extract from student materials

Full document available at https://heerdebeer.org/DR/DE1/software/les1.html

Figure 5: Using constant speed
in an imaginary highball glass to
quantify instantaneous speed in
a cocktail glass

Next, the students would be asked when the water rises
with the same speed in both the highball and cocktail glass.
Given their informal understanding of the relationship
between the width of a glass and speed, they would be
expected to come up with the point where both glasses have
the same width. We then wanted to support them in
realizing they can compute the speed at a specific point by
computing the corresponding speed of the highball glass.
When prompted to think of a way to determine the speed at
another point, we expected the students to imagine a
highball glass with the same width as the cocktail glass at
that point, and compute its speed (see Figure 5). After
introducing a computer-tool to draw an imaginary highball
glass on top of other glasses, the students would have a tool
available for measuring instantaneous speed in various
glassware.

Then, the students would start exploring the situation quantitatively by measuring
instantaneous speed at various points. We initially planned to deepen their emerging

de Beer, H., Gravemeijer, K., van Eijck, M. (2018) Exploring Instantaneous Speed in Fifth Grade. Educational Designer, 3(10).

Retrieved from: http://www.educationaldesigner.org/ed/volume3/issue10/article39/ Page 9

https://heerdebeer.org/DR/DE1/software/les1.html


Figure 6. Example of the lesson 4 toy car racing activities

Explore all of the lesson 4 activities at https://heerdebeer.org/DR/DE1/software/les4.html

quantitative understanding by having them draw speed-volume graphs, followed by tasks
to reconstruct the shape of a glass on the basis of its speed-volume graph. However, when
trying out this learning trajectory in a mixed 5th/6th grade gifted classroom with an
experienced teacher, we observed that the students seemed to become bored with filling
glasses in the third lesson. As we had planned one-on-one teaching experiments in
between lessons four and five to explore students’ conceptions of speed in other contexts,
we decided to alter the fourth lesson by including these activities about other contexts:
toy-car racing and daily temperature. (Figure 6).

We realized, however, that to determine speeds in those contexts the students had to be
able to work with the tangent line on a curve. We conjectured that by combining the
highball-glass-tool and a tangent-line-tool, the students would come to see that the
tangent line in a point of the graph corresponds with the linear graph of the speed in the
virtual highball glass (Figure 7). Then we expected the students to be able to use the
tangent-line as an indicator of the speed at a point of a graph even when the graph is
shown without the realistic simulation.
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Figure 7. Linking the speed in an imaginary highball glass to a tangent line

Explore online at https://heerdebeer.org/DR/DE1/software/les4.html 
– choose "Klassikaal 1" and press the "triangle" button in the top-left corner

Observations, reflections, and revisions

The first instructional activities were intended to lead the students to coordinate two
quantities, but, as a side effect, they made the students think about change in terms of the
hash marks on a measuring cup, height differences, and intervals. This discrete approach
to change was being reinforced by the way the teacher approached whole-class
discussions about computing speed in the highball glass. She wanted the students to
mark measurements from a table as points of the graph first before connecting the points
with straight lines even when some students argued to draw a straight line immediately.
She led the class to focus on determining speed on small intervals, without discussing
what a computed speed actually meant. Thus, when the highball glass was replaced by the
cocktail glass, the students interpreted this situation in terms of a series of discrete
changes. They had trouble matching that perspective with the continuous changing speed
in the cocktail glass.

It showed that already at the end of the first lesson the students realized that the speed in
the cocktail glass and highball glass are the same when they have the same width. As
anticipated, this allowed the students to invent the virtual highball glass as a measure for
instantaneous speed. Linking the highball-glass-tool directly with the tangent-line-tool in
the computer simulation (as shown in Figure 7) seemed to enable the students to
determine instantaneous speeds in the cocktail glass, although the extent of their
understanding of the tangent line and its relation with speed remained unclear.
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In the context of toy-car racing, the students were able to interpret the graph, and most
could compute the instantaneous speed using the tangent-line tool. However, the concept
of instantaneous speed was not discussed. Moreover, we suspect that the students’ skill in
using these tools to compute instantaneous speed was mostly procedural in nature and
not an expression of a deeper understanding of instantaneous speed.

Chunky thinking

During the first three lessons, the students displayed what Castillo-Garsow, Johnson &
Moore (2013) denotes as a chunky way of thinking, which was promoted by both
instructional sequence and teacher. Castillo-Garsow (2012) introduced the concepts
‘chunky’ and ‘smooth’ to characterize two different forms of reasoning. Thinking about
change in terms of intervals, or completed chunks, is called ‘chunky’. Students with a
chunky image of change see change on an interval as the end-result of change on that
interval. Students who see change as a continuous process have a ‘smooth’ image of
change (Castillo-Garsow, 2012; Castillo-Garsow et al., 2013). Smooth thinking is
fundamentally different from chunky thinking, and chunky thinkers will have trouble
thinking about change as a continuous process. Contrariwise, thinking in terms of
chunks, however, is apparently relatively easily achievable from a smooth perspective
(Castillo-Garsow et al., 2013).

We may briefly summarize what we learned:

We became even more aware that the power of the context of filling glassware
lies in the fact that it offers the students a sound theory to reason about the
covariation process on the basis of their understanding of the relationship
between the width of a glass and the speed of the rising water.
The students showed their implicit conception of instantaneous speed when
answering the question, “When is the speed in the cocktail glass equal to the
speed in the highball glass?” This was because this answer presupposes that one
thinks of speed at a point.
The students could handle the tangent-line tool, but we doubted their level of
understanding.
Further, they still did not manage to come up with a continuous graph. We
inferred that starting with the highball glass might have put them on the wrong
track.

Design experiment 2

Chunky thinking is highly problematic because developing and reasoning about a smooth
graph is a key element in the envisioned learning process. To overcome the problem of a
discrete learning environment reinforcing discrete thinking, we decided to change the LIT
for design experiment 2 to let the students’ learning process revolve around the non-
linear situation of filling the cocktail glass. In this we also followed Stroup (2002), who
argues that linear situations might be too simple to support students' developing
understanding of calculus-like topics. We also removed the measuring cup activities
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because these invited students to focus on interpreting a continuous process in a discrete
manner.

Modelingbased learning

To increase conceptual discussion about speed we opted for a modeling-based learning
(MBL) approach. An MBL approach aims at getting access to the students’ thinking by
having them express their understanding in visual or ‘expressed’ models (Coll, France, &
Taylor, 2005; Gilbert & Boulter, 1998). An expressed model can be presented, discussed,
and evaluated in class, allowing students to refine their models, while giving the teacher
(and researchers) indirect access to their thinking.

Then we would shift to a brief exploration of the speed in a highball glass. We expected
students to be able to depict filling the highball glass, to explain why this graph is a
straight line, and to compute the constant speed. Next, the students would be guided
towards construing the highball glass as a tool for measuring instantaneous speed by
exploring when the speed is the same in both glasses. Building on that realization, the
students were expected to come to see that the curve of the cocktail glass is as steep as the
straight line of the highball glass at that point. Finally, we would explore if the students
could use this understanding in the context of toy-car racing. We expected the students to
explain a race given a graph, indicate where the car went fastest or slowest, and use the
tangent line to quantify its speed.

We redesigned the conjectured learning trajectory with a MBL approach in mind. We
would ask the students several times to model the speed with which a cocktail glass fills
up, and to improve their models. We expected the students’ first models to be quite
realistic depictions of the situation (Schwarz, 2009), and these would be the starting
point to support the students in developing more mathematical models. When these first
models would be evaluated by running the computer simulation (Figure 8), we expected
the students to be surprised by the non-linear nature of the situation, but immediately
realize why the glass fills up the way it does. When asked to make a new model, we
expected them to express the non-linear nature of the situation by coordinating water
height and time. Next, in order to shift the students’ attention toward quantitative
coordination of water height and time, we would ask them to create a model to predict the
water height at certain moments. We expected them to create more precise models by
using the simulation to measure the situation and use these measurements to annotate
their models.
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Figure 8. Computer simulation of filling the cocktail glass: explore volume, height, and time

Explore online at https://heerdebeer.org/DR/DE2/software/les1.html

Observations, reflections, and revisions
Modelingbased learning

We tried this conjectured learning trajectory in a small-scale teaching experiment with
four grade 5 students; the first author acted as a teacher. The MBL approach was a
success with respect to generating more conceptual discussion about speed. Modeling
helped students and teacher alike to express and discuss their thinking in more detail.
There was ample room to explore alternatives. The students had some difficulty with
combining the graphs of the cocktail glass and the highball glass. Eventually, they figured
out that they had to draw a line through the appropriate point of the cocktail-glass graph,
parallel to the highball-glass graph. This offered a basis for introducing the tangent line,
and most students were able to determine the instantaneous speeds in the cocktail glass
by using the tangent line.

In this manner, the students developed a deeper qualitative understanding. Their
quantitative understanding of instantaneous speed lagged behind, however. Although
they were able to use numerical procedures to compute speed, their ability in applying
these procedures was limited. Students’ prior understanding of speed as a ratio of
distance over time appeared less well developed than anticipated. Furthermore, students’
command of units and quantities was touch-and-go. We concluded that as primary-
school students’ prior understanding is under-developed, we would have to pay more
explicit attention to units, quantities, and computing speed as part of the learning
trajectory.
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Students appear inherently chunky thinkers

The other main change to the LIT did not work out as we had hoped. We had conjectured
that starting the exploration of speed with the cocktail glass and skipping the measuring
cup activities would steer students away from discrete thinking and make it easier to
interpret filling glassware as a continuous process. However, despite the fact that the
students seemed to realize that the speed changed continuously, their models still
reflected a discrete perspective. And when the students tried to incorporate more
quantitative aspects, their models became even more discrete. This appeared to fit the
characterization of chunky thinkers by Castillo-Garsow (2012). We therefore conjectured
that students of this age might be chunky thinkers who have to be supported to in making
the switch from discrete to continuous thinking about speed.

We may briefly summarize what we learned:

The modeling activity did help to make the students’ thinking visible and a topic
of discussion.
The students showed a lack of understanding of, and fluency with, measures of
speed.
There was still no success in developing continuous graphs: we conjectured that
students of this age may be chunky thinkers.
However, the students construed the tangent line to the cocktail glass curve
parallel to the graph of the highball glass as an indicator of the speed at a given
point.

Design experiment 3

This section, in particular the vignette, is partially based on the results presented in Beer
et al. (2015).

Working towards continuous graphs

We decided to start again by asking the students to explore the glass-filling context by
repeatedly modeling how the cocktail glass fills up. Then, instead of just introducing the
curve, we added two activities to support students in developing the continuous graph by
building on their own models. First, the students would be asked to draw on paper a
minimalist model by taking one of their previous models as a basis and removing those
characteristics that were not absolutely necessary to describe the situation. We expected
them to make a step towards more abstract discrete models by removing realistic
elements such as glasses and water sources. Then, based on these minimalist models, the
teacher would guide the students to adapt their models to become increasingly graph-like
representations, starting with a bar graph, followed by an arrow graph, leading up to a
continuous Cartesian graph. The bars in the bar graph would come to signify water
heights at specific moments, and arrows connecting the end points of the bars would
come to signify change. Figure 9 shows that these three different types of graph can be
toggled by buttons A, B, and C. With slider D the interval between the bars and the
arrows can be changed, showing more or fewer points. In this phase, we expected the
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Figure 9. Simulation showing bar and arrow representations working towards a continuous curve
(composite image)

Explore online at https://heerdebeer.org/DR/DE3/software/lessen/lesA2.html

Quantifying speed

Following the introduction of the curve, we would continue with the exploration of
quantification of instantaneous speed by introducing the highball glass and asking the
students to draw its graph on paper. Here, the teacher would activate the students’ prior
knowledge of computing speed by explicitly referring to familiar notions of speed as
distance over time before moving towards computing the rising speed in the highball
glass. By paying attention to the quantities and the units involved, we expected the
students to become better aware of what speed means in this situation. Through
exploring speeds in various highball glasses, the students would become familiar with
computing speed.

graph—as a model—to still derive its meaning for the students from its reference to the
actual situation. Reflecting on computer-drawn continuous graphs and student-generated
graphs in relation to the shape of the glass, we expected the students to come to see the
curve as signifying both the changing value and the instantaneous speed.
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Figure 10. The tangentlinetool for measuring instantaneous speed

Explore online at https://heerdebeer.org/DR/DE3/software/lessen/lesA3a.html

Next, we would switch to the familiar context of cooling and heating of water. The
students would be asked to graph what happens when a glass of hot water cools down or a
glass of ice-water warms up. After discussing these graphs, we would ask students to
repeatedly measure the temperature at several moments and to compute the differences
with the previous measurement and the room temperature, followed by computing the
cooling speed and predicting when the cooling process will be finished. We expected them
to improve their first models and to be able to point out where the temperature of the
water cools down the fastest and why that is. Thus, we expected them to reinvent a
qualitative version of Newton’s law of cooling.

Observations, reflections, and revisions
Students constructing continuous graphs

We translated the conjectured learning trajectory into an instructional sequence and tried
it in two mixed 4th-6th grade gifted classrooms taught by the same teacher. A month
after the first three lessons about filling glassware, a fourth lesson was taught about
cooling and heating. Each lesson was first taught in classroom 1 (C1) on Fridays and then,
after the weekend, in classroom 2 (C2).

The first lesson went in a similar manner as in design experiment 2: the students created
increasingly more discrete models. When the students were asked to create a minimalist
model in the next lesson, there was one pair of students in each classroom that created a
graph-like model.

Building on the students’ understanding of the relationship between the width of a glass
and speed, they would be guided to invent the highball glass as a tool for determining the
instantaneous speed in the cocktail glass. Next, this understanding would be expanded by
linking the graph of the highball glass to the steepness of the curve of the cocktail glass at
the point where both glasses have the same width. Then the tangent-line tool would be
introduced as a means for measuring instantaneous speed (Figure 10).
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In C2, the students did need the guidance of the teacher—as we had anticipated. Building
on a discrete visualization of the filling process, the students in C2 became focused on
individual water heights—which obscured the bigger picture of how the rising speed
changed over time. In C1, however—where a segmented-line graph functioned as a
starting point—the students developed an adequate representation of continuously
changing speed as an improvement of a given straight line graph, as shown by the
following vignette.

Eric:
Teacher:
Eric:

Teacher:

Eric:
Teacher:

Larry:

Figure 11. Student drawn graph
drawn emphasized and
annotated by the teacher

The teacher invited several pairs to present their minimalist
model in front of the class. One of these models was a
graph-like model (Figure 11). This involved an exchange in
which the students clarified their graph, and the teacher
labeled the axes with units and numbers and emphasized
the graph by drawing it again in red.

Then, after a short detour discussing other students’
models, the teacher returned to this graph-like model and
asked a student (Eric) if he could find the rising speed in
the graph.

No.
Why not?
Because it's slanted and it's slanted like
that the whole time.
And that fits with this, with this, this
glass?
No.
No, right? And how should it go then, you
think? Eric, or Larry.
I think it should go a bit bent.

Jessica:

Teacher:

Timothy:
Teacher:

Timothy:

Figure 12. Larry draws a
concave curve on top of the
original straight line

While drawing a curve in red on top of the graph (see
Figure 12), Larry explained that at a certain moment the
graph almost does not rise any more. When the teacher
asked if everyone understood what Larry was doing, they
answered yes; Jessica explained as follows.

Yes, because it is bent, you can have it go,
yes, steeper, so you can specify that it
goes slower all the time. Because in the
end, it has to go to the right.
But, where, where, in what part of the
graph it rises the fastest, for example?
In the beginning, at the bottom.
Yes, in the beginning, here at the bottom.
But why, how can you see that?
Well, because there, it goes up.
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Students are smooth thinkers, but fall back to discrete models

We explored this unexpected difference between the two classrooms in detail in Beer et
al. (2015), where we concluded that although classroom conditions often gave rise to the
invention and use of discrete representations, the underlying conception that the
students reasoned from was continuous. Various facts substantiated our conjecture that
the students came to the classroom with a continuous conception of speed:

The students quickly realized that the speed was continuously decreasing
because of the increasing width of the cocktail glass’s bowl, when they saw a
cocktail glass fill up.
The students spoke about their realistic drawings or snapshots models as
descriptions of a process.
The ease with which the students came up with snapshots suggested that
students were familiar with the idea of using discrete snapshots to visualize
change over time.
The students effortlessly accepted the curve, once it was introduced, which could
be explained by assuming that the continuous model matched their existing
continuous conception of the situation.
After having seen how a discrete graph approached a curve when decreasing the
interval between points, the students never referred back either to the bar graph
or the arrow graph in later lessons.
Finally, the students in classroom C1 developed a continuous curve by
themselves because they were dissatisfied with the discrete and linear graph.

Procedural understanding and quantification

With regard to primary school students’ superficial notion of quantification, the teaching
experiment of design experiment 3 further showed that the students were able to quantify
speed with the help of the teacher. However, their quantitative understanding never
seemed to exceed the ability to execute a procedure to compute speed. Apparently, the
quantities, the units, and the measurements were not meaningful to them, and did not
transcend the level of numbers in a calculation.

Finally, with respect to the flexibility of the students’ understanding of instantaneous
speed, the way the students reasoned in the context of cooling and heating was similar to
that in the context of filling glassware. They were able to represent their understanding of
a situation in a graph and could interpret a graph in light of the situation. They were able
to point out when the speed was highest or lowest, and could use the tangent-line-tool to
measure instantaneous speed.

Teacher:

Timothy:
Teacher:
Timothy:

But here (teacher points to a part of the
graph at two thirds of the length of the
graph) it does also go up.
Yes, but it goes a little less higher.
Less higher?
Yes, less fast.
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We may briefly summarize what we learned:

1. The students in C1 were able to invent a continuous graph by themselves, by
using their understanding of the relationship between the width of a glass and
speed, and thus of the character of the covariation. Therefore, they are not
chunky thinkers; they are continuous thinkers who have difficulty with
graphing!

2. Although starting discretely, the students in classroom C2 came to understand
the continuous graph through shrinking the intervals of a bar chart.

3. The students construed the tangent line as an indicator of the speed at a given
point. (We see this as a tangent line; the students however were not yet familiar
with that notion.)

4. Students came to understand the shape of the graphs of a cooling process as
being predicted by the tangent line that depended on the temperature
differences.

5. Students did not have a sound basis for calculating speeds: they did not really
understand average speed, and they had a limited understanding of the
measurement units. They need more experience with quantifying constant
speeds in a variety of ways (with different units), and relating those with the
corresponding graphs.

The yield and trackability of our learning process
We argue that the instructional sequence we tried in the last teaching experiment worked
rather well although the students’ weak understanding of measuring speed clearly was a
limiting factor. On the other hand, the invention of the curve as a better representation of
the process of filling a cocktail glass surpassed our expectations. If we adjust for these two
aspects we may describe the prototypical instructional sequence emerging from the last
teaching experiment as follows:

1. Students model the process of filling a cocktail glass.
2. Supported by a computer simulation, students develop a minimalist model of

this process on paper. This explicates the underlying process: the wider the
glass, the slower the water level rises.

3. Students work towards conventional graphs that are known to them: bar graphs
and segmented-line graphs.

4. Students are supported in inventing the continuous and curved line graph as the
best representation of the cocktail glass’ filling process by

a. critiquing the segmented graph and
b. increasing the number of bars in the bar graph with a computer tool.

5. Students explore the highball glass, its linear graph, and its constant speed with
the computer tool (that can show a simulation of the filling process, and has the
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option of showing the corresponding graph); by investigating highball glasses
with various widths, and by varying the measurement units.

6. Students discuss the question: “When are the speeds in a cocktail glass and a
highball glass the same?”

7. Students are introduced to and work with a virtual highball glass in the
computer simulation.

8. Students compare the graphs of the cocktail glass and the highball glass; they
figure out that a straight line that touches the cocktail glass curve at the point
where the widths of both glasses are the same is parallel to the highball glass
graph, and it signifies the speed at that point.

9. Students investigate the tangent line as an indicator of speeds in various points
of a graph; both static at a given point, and dynamic moving along the graph.

10. Students generalize their understanding of instantaneous speed and graphs
towards heating and cooling of water.

The development of this prototypical instructional sequence was illustrated in the
previous section in terms of our own learning process, which encompassed both the
design decisions and the rationale for those decisions, and thus also described the
emerging LIT. To avoid too much overlap, we will not reiterate this LIT here in detail, but
summarize the most important theoretical findings. We formulate such a LIT elsewhere
in detail (Beer, 2016).

1. Key is the thesis that the students are spontaneously thinking in terms of
instantaneous speed from the start. This conception allows the students to come
up with ‘equal widths’ as the answer to the question, “When is the speed in the
cocktail glass and the highball glass the same?” This also fits with the students’
quick understanding of the constantly decreasing speed in the cocktail glass, and
with the intuitive appreciation of the curved continuous graph. It also enables
the students to reinvent the continuous graph by arguing that the graph of filling
a cocktail glass cannot be linear because the rising speed is diminishing all the
time. Thinking of speed as instantaneous speed, and realizing that the speeds
are the same at the point were two glasses have the same width, enables them to
use the virtual highball glass as a means of establishing the speed at a given
point in a cocktail glass.

2. When asked to imagine filling a highball glass, the linearity of the relationship
between water level height and volume is self-evident for the students, which
they effortlessly express with a linear graph. As the students have little
understanding of average speed, we may assume that they think of constant
speed in connection with a linear process. This understanding is powerful
enough to help the students construe the tangent line as an indicator of the
speed in a given point: by combining the graph of the cocktail glass and the
graph of the virtual highball glass. Unfortunately, their understanding of, and
fluency with measures for speed hinders the opportunity to subsequently
quantify instantaneous speed. However, they understand the tangent-line tool
well enough to link the difference between the actual and the final temperature
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to the tangent line in a cooling process, and explain the cooling graph in this
manner.

These theoretical findings offer the rational underpinning of the prototypical
instructional sequence. They can be taken as conjectures on how students in other
classrooms may reason. In this manner, they offer a framework of reference on the basis
of which teachers may adapt the instructional sequence to their own needs and their own
classrooms. In addition, they offer support for instruction design, and for new design
experiments and further theory development.

Reflections on our learning process with respect to educational
design
In the previous sections we have elaborated on the learning process of the
researchers/designers. When reflecting on this learning process from an instructional
design perspective, we may discern a series of design decisions that were reflexively
related to this learning process.

The first design decision concerned the choice for social-constructivism and RME theory.
For us, the choice of this theoretical framework was self-evident and a rather implicit
decision. From early on, guided reinvention was part of the design process. Our aim was
to support the students in building on, and extending, their own understanding of speed.
We further oriented ourselves towards historical conceptions of speed. The choice for the
context of filling glassware was partially motivated by the didactical phenomenology
heuristic. In our search for an application of speed that would be experientially real to the
students, we came across this context. In both the literature and primary school
textbooks we found indications that students would be able to easily connect their
intuitive understanding of this situation with graphs. We especially appreciated the fact
that the student's understanding of the filling process would offer them a basis for
reasoning about the changing speed of rising. In a sense, they would have a theory to
underpin their reasoning about the co-variation.

The next design decisions concerned the choice to start with a series of one-on-one
teaching experiments—we found our knowledge about the potential starting points of the
students was wanting— and our subsequent decision to start the first design experiment
by repeating the activities of the one-on-one teaching experiments. In addition, we
decided to ask the students to tell us when the rising speed in a cocktail glass and a
highball glass would be the same, because we saw great potential in linking the speed at a
given height in a cocktail glass with the speed in a highball glass of a corresponding
width. A related design decision was to use this as a starting point for introducing the
connection of the instantaneous speed at a given point in time with a linear graph, or a
tangent line, through a corresponding point of a height-time graph. For this we designed
a computer tool. Finally, the graph and the tangent line became an independent object of
investigation. Time constraints, however, did not allow for a thorough investigation of
this idea.
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Guided by the conjecture that the students were chunky thinkers (in accordance with
Castillo-Garsow, 2012), we decided in design experiment 3 to support students in
switching to a continuous perspective by starting with the cocktail glass, and to follow a
MBL-approach (Coll et al., 2005) in order to get more insight in the students’ thinking.
The students showed how the insight that the rising speed was constantly changing leads
to the conclusion that there cannot be a straight part in the graph. This reasoning of the
students created the need to take a fresh look at our design. The way that the students
argued for the curve, as an improvement over the segmented-line graph, was in conflict
with our implicit assumption that the students had some form of average speed in mind
when they spoke about speed. After reexamining our data we concluded that the students
did not speak of, or reason with, average speed, but reasoned from an informal
conception of instantaneous speed. Thus their intuitive notions of speed were continuous,
but they lacked the representational competency to model it with continuous models, and
therefore resorted to discrete snapshots models (Beer et al., 2015). This put the idea that
the students were chunky thinkers in a different light.

From the RME perspective we may observe that our learning process also helped us to
sharpen our ideas of how the emergent modeling heuristic could be developed further.
We realized that the snapshot pictures of water heights and discrete height-time graphs
initially signified a series of water heights for the students. Simultaneously, with the
support of the teacher and the instructional activities, the subsequent graphical
representations started to come to signify speeds of rising—indicated by the curvature of
the slope of the graph. Key elements in this process concerned,

1. the students' understanding that speeds in two glasses would be equal at the
point where the widths were equal, which

2. gave us a starting point for introducing the connection of the instantaneous
speed at a given point in time with a linear graph, or a tangent line through a
corresponding point of the height versus time graph, and

3. the students' invention of the continuous graph.

This, however, did not change our initial insight, that it would require more than a few
lessons to develop instantaneous speed as an object-like conception that would derive its
meaning from a network of mathematical relations. That would be the goal of emergent
modeling in this case. We may add that this also holds for doing justice to the didactical
phenomenology design heuristic.

de Beer, H., Gravemeijer, K., van Eijck, M. (2018) Exploring Instantaneous Speed in Fifth Grade. Educational Designer, 3(10).

Retrieved from: http://www.educationaldesigner.org/ed/volume3/issue10/article39/ Page 23



Discussion
Even though some of those findings reflect what is already known about what students
can do and how they are taught in regular classrooms, we believe that the findings as a
whole offer a new and exciting perspective on what and how primary-school students
may learn about speed. Their insight in what determines the rising speed in a glass, and
their implicit conception of speed as an instantaneous speed that may change
continuously, can be exploited by supporting various forms of graphing, in order to
develop a deeper understanding of speed that may evolve into understanding speed as a
rate.

As a caveat we may note that these claims are based on observations of how the students
acted and reasoned during the design experiments. Our interpretations of those
observations fed into either the next activity or the next experiment, which resulted in
micro-design and macro-design cycles that had strong similarities with an empirical cycle
of hypotheses testing. We can, however, only make claims about the students who
participated in our experiments. Even then we have to take care to carefully ground our
claims in the observational data. That is, we have to make sure that our conclusions are
valid for the majority of the students in the class and not just a few, which is not always
easy as not all students speak up during classroom discussions. Here it is important to
determine what the social norms in the classroom are. We have to know whether the
students are likely to speak up when they disagree or do not understand what is going on.
We judged that this was predominantly the case in the classrooms where the experiments
were carried out.

In addition to the micro-design cycles that immediately contribute to the learning process
of the researchers, one usually also carries out a retrospective analysis after the
experiment is concluded. Here Glaser and Strauss’ (1967) method of constant comparison
is the designated method. We presented an exemplary elaboration of this method for
design experiment 3 in Beer et al. (2015). Note that the results of this procedure limit
themselves to statements about the actual design experiments. Glaser and Strausss‘
(1967) method does not answer the question whether those results are generalizable. On
the basis of those findings, however, a design experiment can be treated as a paradigm
case. The goal then is to come to understand the specific characteristics of the
investigated learning ecology in order to develop theoretical tools that make it possible to
come to grips with the same phenomenon in other learning ecologies. Instead of a
scripted lesson plan, the LIT offers a theory of how the intervention works, which
teachers and instructional designers can adjust and adapt. To be complete, we should add
that design research may also aim at developing theories—or theoretical tools—on more
encompassing issues that transcend the LIT, such as ‘classroom social norms’, or
‘symbolizing’. In such cases, the learning ecology that is created serves as a condition for
research on this more encompassing issue.
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