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The aim of this article is to offer an operational elaboration of the emergent modeling
instructional design heuristic. This is one of the three instructional design heuristics with
which the theory of realistic mathematics education (RME) may be characterized. First
some background is given and it is elucidated how this heuristic was construed as a
means of addressing the tension between RME theory and the socio-constructivist
perspective on modeling. Next the heuristic is explicated in more detail with a design
experiment on a sequence on addition and subtraction up to 100, which played a major
role in the elaboration of this heuristic. Subsequently operational guidelines are
presented, which are illustrated with reconstructions of the design of four instructional
sequences, on addition and subtraction up to 20, introductory data analysis, graphs, and
functions.

In this paper we want to discuss one of the instructional design heuristics of the domain-
specific instruction theory of realistic mathematics education (RME). Originally, RME was
construed by Treffers (1987) as a descriptive theory. His primary aim was to distinguish
the realistic approach from structuralistic, empiristic and mechanistic approaches. Later,
however, RME has been characterized also with three instructional design heuristics:
guided reinvention, didactical phenomenology and emergent modeling. In this article, we
will focus on the latter design heuristic. In many publications emergent modeling has been
described in terms of how it plays out in a given design or local instruction theory. An
operational elaboration is lacking, however, and it is this lacuna this article aims to fill.

We will first discuss the background of this heuristic, then explicate the heuristic in more
detail with an example that also played a major role in the elaboration of this heuristic.
Next, we will seek an operational description, which will be applied to four different cases.
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Instructional design heuristics
In 1987 Treffers published his framework of a domain-specific theory of mathematics
education, which became known as realistic mathematics education, or RME. This
framework was the result of reconstructing the theory underlying instructional sequences,
which was based on Freudenthal’s (1973) ideas on mathematics education. As we noted
above, this reconstruction had a descriptive character. Later, RME theory was recast in
terms of three instructional design heuristics (Gravemeijer, 1999): guided reinvention,
didactical phenomenology and emergent modeling.

Guided reinvention reflects Freudenthal’s (1973) idea that students should experience
mathematics as a human activity and reinvent mathematics while being guided by teachers
and tasks. The history of mathematics is an obvious source of inspiration for designing a
route along which students might reinvent this mathematics.

Didactical phenomenology also originates from Freudenthal (1983). In his view, one of the
main characteristics of mathematical activity is organizing—either organizing subject
matter from reality or organizing mathematical matter on a higher level. The heuristic asks
one to analyze what phenomena are organized, and how they are organized by the
mathematical thought thing (concept, procedure or rule) one is aiming for. This then
points in the direction of situations that may create the need for organizing such
phenomena, and thus for inventing the appropriate thought thing.

The third heuristic is the emergent modeling design heuristic, which is the topic of this
article. This heuristic aims at supporting an incremental process in which models and
mathematical conceptions co-evolve. Central to the emergent modeling design heuristic is
the use of a series of sub-models, which together substantiate an overarching model. This
overarching model develops from a model of informal mathematical activity to a model for
more formal mathematical reasoning.

Shortly after Treffers’ (1987) publication, (socio-)constructivism started to gain broad
recognition in the mathematics education community. Socio-constructivist principles
appeared compatible with Freudenthal’s (1973) notion that students should experience
mathematics as an activity and construct mathematics by themselves—albeit guided by
teachers and textbooks. Socio-constructivism was adopted in varying degrees by
researchers working within RME. As a consequence - RME being a dynamic theory (Van
den Heuvel-Panhuizen & Drijvers, 2014) - various conceptions of RME emerged, in which
the role of (socio-)constructivism diverges.

A socio-constructivist elaboration (Gravemeijer, 2020) distinguishes itself from the earlier
non-constructivist version in three aspects.

The socio-constructivist view on classroom culture; which translates into viewing an
inquiry classroom culture as a prerequisite for enacting RME. This involves the classroom
social norms, socio-mathematical norms, mathematical practices, and the corresponding
teacher and student beliefs (Yackel & Cobb, 1996).

The way the mathematical practices are conceptualized. Here, framing mathematical
issues as topics for whole-class discussions, plays a central role (Cobb, Gravemeijer,
Yackel, McClain & Whitenack, 1997).
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Addition and subtraction up to 100

The notion of emergent modeling, which describes how a series of sub-models may
support the mathematical advancement of students. How this heuristic reflects a socio-
constructivist elaboration of RME is one of the topics of this paper.

The emergent modeling design heuristic
The emergent modeling design heuristic originated from frictions between RME and
socio-constructivist thinking about the role of modeling. Where socio-constructivists were
wary of the use of symbols and models, models played a central role in RME. Treffers
(1987, p.246), for instance, designates, ‘bridging by vertical instruments’, such as, ‘models,
schemas, diagrams and symbols’, as one of his five educational tenets. This bridging
metaphor, however, conflicts with a constructivist point of view. This is because, as all
knowledge has to be constructed by the individual, formal mathematics does not exist as
an external body of knowledge independent of a knowing actor. Thus, for the students
there is nothing this bridge can connect with. Moreover, the use of models and symbols
was seen as problematic in general. Classroom observations had shown that teachers failed
to convey mathematical knowledge by using symbols and models. This was explained by
arguing that symbols and models did not signify for the students what they signified for
the teachers, as a model or symbol does not carry meaning in-and-of-itself. Or, to be more
precise, inscriptions—marks on paper or tactile objects—do not carry meaning. The word
‘symbol’ is less precise. It might mean merely the inscription, but it might as well refer to a
broader conception, including its meaning in a given social practice. We will, however, use
kindred terms flexibly.

Speaking of the meaning of symbols, Bereiter’s (1985) learning paradox comes to mind,
which we may phrase in the following manner. In order to gain access to a given piece of
mathematics, students need to understand the symbols that belong to that piece of
mathematics. However, these symbols derive their meaning from the very piece of
mathematics the students are trying to get access to.

A way to circumvent the learning paradox was found in the emergent modeling design
heuristic (Gravemeijer, 1999). Instead of telling students how they should interpret a given
model, or symbolization, one would aim for an incremental process in which models are
constructed. Central to the emergent modeling design heuristic is the use of a series of
sub-models, which build on each other. This idea of a series of sub-models proved similar
to the way symbolizations developed in the history of mathematics. Historically, formal
symbolizations grew out of informal, situated, forms of symbolizing. They developed over
time in a reflexive process in which symbolizations and meaning co-evolved (Meira, 1995;
Latour, 1990). This reflexive process involves a cyclic alternation of developing new
symbolizations and developing new meaning. Working with certain symbolizations, one’s
conceptual understanding deepened, then new symbolizations were developed that
captured the new meaning and working with the new symbolizations started a new cycle.
In relation to this, we speak of a ‘chain-of-signification’ (Walkerdine, 1988).

The emergent-modeling idea originated from noticing a shift in the thinking of students,
who were using the so-called empty number line; from modeling calculations that
mirrored actions in the context of the problem, to modeling the use of number relations,
which did not mirror the activity in the problem context (Gravemeijer, 1991). Here we may
think, for instance, of a task such as:
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Jim had 66 sweets. He has eaten 39 of them. 
How many sweets does he have now?

The corresponding calculation would be ‘66 take away 39’, which could be solved by
counting down in jumps on the empty number line. Figure 1a shows the jumping as 66 – 6
= 60; 60 – 30 = 30; 30 – 3 = 27. However, the problem may also be solved by reasoning,
66 – 39 = 66 – 40 + 1 = 27 (Figure 1b), using the number relation 39 = 40 – 1.

Figure 1 – Jumps on the empty number line illustrating different
significations

This difference was interpreted as a shift in what the model signified for the students.
Initially the model signified potential actions in the problem context; later the model
signified reasoning with number relations. Key in this transition is that the students
developed a network of number relations. Only because the students had constructed the
relevant number relations, could they use the number line as a model for reasoning about
number relations. This observation laid the basis for the emergent modeling design
heuristic, which assumes that a model of informal mathematical activity may develop into
a model for more formal mathematical reasoning.

This emergent modeling instructional design heuristic was worked out during a design
experiment with a local instruction theory on addition and subtraction up to 100 in the
context of linear measurement (Stephan, Bowers & Cobb with Gravemeijer, 2003). A local
instruction theory encompasses the tasks, discourse, social norms, tools and the
orchestration of the classroom discourse (Gravemeijer, 1991). With an eye on readability,
however, we will limit ourselves to tasks and tools and use the term ‘instructional
sequence’. The design encompasses a series of sub-models or tools, which originate from
iterating individual measurement units, and develop into the more abstract jumps on the
empty number line—which students use to scaffold the activity of adding and subtracting
numbers up to 100. We will start by briefly summarizing the series of sub-models.
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After some introductory activities a start is made by measuring length by iterating
Unifix cubes (in the context of a story of dwarfs measuring with food cans the size of
one Unifix cube).
After that a ten bar (ten Unifix cubes clicked together) is introduced to facilitate the
measuring activity. The students then have to coordinate units of ten and one.
Soon thereafter the ten bar is replaced with a paper ten strip, which is more
convenient for the dwarfs. In order to measure with just the strip—without loose
cubes—units of one cube have to be marked on the paper strip (see Figure 2).
Next 10 ten strips are glued together, generating a measurement strip of 100 units
(see Figure 2).
Then activities involving incrementing, decrementing and comparing lengths are
presented to the students. Those tasks may be solved by counting individual units on
the measurement strip at first, but the students may also start using the
measurement strip for scaffolding arithmetical solution methods. For example, the
difference between 36 and 65 is found by adding 4 to 36 to get 40, then adding 20,
which makes 60, and finally adding 5 to 60 to get to 65—which corresponds with a
difference of 4 + 20 + 5 = 29.
It is at that moment that jumps on the empty number line are introduced as means
of scaffolding and communicating arithmetical solution strategies (Figure 3). This
anticipates using number relations without the support of a number line.

Figure 2 – Ten strip and measurement strip

Figure 3 – The difference between 36 and 65 on the empty number line

Sub-models and an overarching model
Within this series of sub-models or tools, actions with a new tool signify actions with an
earlier tool for the students. In this respect we can speak of a ‘chain-of-signification’
(Walkerdine, 1988). Thus, there is always a history which allows for a sensible
interpretation of the activity with the new tool. Each time, the introduction of a new tool is
accompanied by new student activity.

A number of comments may be made here. The first is the caveat that, when designing an
instructional sequence, the tools are invented by the instructional designer, not by the
students. To adjust for this one may try to ensure that each new tool emerges as a solution
to a problem that has its roots in activity with the earlier tool. In this manner, the history
of working with the earlier tool may provide the imagery underlying the new tool. Whether
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this is the case may be inferred from whether or not the new tool is used flexibly by the
students.

As a second comment we may note that, although we use the outer forms to identify the
sub-models, the term ‘model’ has to be understood in a much broader sense. We are not
just referring to a visual or tactile representation, but to what it signifies for the students in
the corresponding social practice; this encompasses the history, the activity with the
model, and the purpose of that activity.

A last comment is that the goals for the students differ from the goals for the teachers and
instructional designers. The activity itself may be the goal for the students whereas the
goal for the teacher/instructional designer concerns the mathematical issue that is
addressed in the activity. (See Table 1, adapted from Gravemeijer, Bowers & Stephan
(2003)). We may especially point to the goal of coordinating units of 10 and 1, and the
activities on incrementing, decrementing and comparing lengths, which foster the
development of number relations, especially involving multiples of ten.

Table 1 – Chain-of-signification for addition and subtraction up to 100.

Tool Imagery/history Activity Mathematical
Issues

Food cans
Measuring by iterating
a Unifix cube, or by
creating a stack of
Unifix cubes

Ten bar Signifies result of
iterating

Measuring by iterating
a collection of ten
cubes

Coordinating
measuring with 10s
with measuring by
1s

Ten strip
Signifies
measuring 10s and
1s with the ten-bar

Measuring by iterating
the ten strip, and using
strip as a ruler for the
1s

Coordinating units
of 10 & 1

Measurement
strip

Signifies
measuring with
ten strip; strip
starts to signify
result of
measuring

Measuring with
measurement strip by
reading of endpoints
Reasoning about
spatial extensions;
incrementing,
decrementing and
comparing lengths

Distance seen as
already partitioned;
extension already
has a measure
Developing and
using number
relations

Jumps on the
empty

number line

Signify reasoning
with measurement
strip

Using the empty
number line as a
means of scaffolding &
communicating about
reasoning about
number relations

Constitution of
numbers as
mathematical
objects that derive
their meaning from
number relations
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The notion of a ruler may be conceived as the overarching model. The ruler emerges as a
model of iterating one or more measurement unit(s), and gradually evolves into a
schematized ruler, which becomes a model for reasoning about flexible mental-arithmetic
strategies for numbers up to one hundred. Within this transition we may distinguish four
levels of activity (Gravemeijer, Cobb, Bowers & Whitenack, 2000):

situational activity; activity in the task setting; measuring by iterating one or more
measurement unit(s)
referential activity; activity with a measurement strip, respectively empty number
line, based on the imagery of iterating some measurement unit
general activity; using the model to support reasoning with number relations
formal mathematical reasoning; the activity of reasoning with number relations
independent of some model.

We may add that the model-of/model-for transition in the emergent modeling design
heuristic has to be understood in a metaphorical sense. It is a construct which helps the
instructional designer to think about the emergent modeling process. The students work
with the series of symbolizations or sub-models, which can be seen as a material correlate
of ‘the model’.

We further reiterate that the emergent modeling process not only fosters the development
of meaningful symbolizations or models; it also fosters the students’ mathematical
advancement. Consequently, the ‘model-for’ derives its meaning from a different reality
(for the students) than the ‘model-of’. We may illustrate the constitution of some new
mathematical reality by looking at the change in what numbers signify for the students.
Initially numbers signify magnitudes; they are tied to measurement units (i.e. food cans).
In the end numbers signify mathematical objects that derive their meaning from number
relations, e.g. 45 is associated with 45 = 40 + 5; 45 = 30 + 15; 45 = 65 – 20 and so forth. In
summary, we may describe the change in terms of three intertwined transitions: (1) the
series of sub-models, (2) the transition from a model of iterating one or more
measurement units to a model for reasoning about number relations, (3) the constitution
of new mathematical reality; from measures to numbers as objects within a framework of
number relations.

From informal to more formal
As a final point we want to discuss the use of the word ‘formal’. Formal might be associated
with bare ‘sums’, or with ready-made mathematics. That is not what is meant here. What
we have in mind here, is mathematics that is constructed by the students by
mathematizing their own informal mathematical activity. The distinction ‘formal –
informal’ is made from the perspective of the instructional designer. The goal of the
emergent modeling approach—and of RME in general—is that the students do not
experience more formal mathematics as different from informal mathematics. In relation
to this, Freudenthal (1991) speaks of growing common sense. Mathematics should start
within, and stay within, the growing common sense of the student. He notes that what is
common sense to a mathematician differs from what is common sense to a student. He
links common sense to his conception of reality in the following manner: ‘I prefer to apply
the term ‘reality’ to that which at a certain stage common sense experiences as real’
(Freudenthal, 1991, p.17). This implies that our reality expands when what we experience
as common sense grows. In this respect, Freudenthal’s conception of reality appears to be
compatible with (socio-) constructivism, even though he spoke out against it (Freudenthal,
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1991, p. 17). We may argue that the latter was more the result of an incorrect image of
(socio) constructivism, than a difference in epistemology. Ideally the students’ growing
reality should also encompass mathematics. Following this line of reasoning, learning
mathematics may be described as constructing a new piece of reality. In relation to this
Freudenthal speaks of the creation of new subject matter:

At every level the subject matter is a certain field that will be organized on
this level. The devices of organizing on a certain level will form the field and
therefore the subject matter, on the consequent higher level. (Freudenthal,
1957, cited by La Bastide-van Gemert, 2015, p. 192)

This idea of organizing and creating new subject matter seems in line with Sfard's (1991)
characterization of the dual nature of mathematics, which involves turning processes into
objects, which in turn are used in new processes.

La Bastide-van Gemert (2015) elucidates that Freudenthal builds on Van Hiele’s (1973)
theory. Van Hiele offered a theory about how students could construct more sophisticated
mathematics by constructing networks of mathematical relations. Against this
background, we may connect the progression from informal to more formal mathematical
reasoning with the creation of some new mathematical reality consisting of mathematical
objects within a framework of mathematical relations. Thus, the distinction between
‘model-of’ and ‘model-for’ is not tied to specific manifestations of the model. Instead, it
relates to the student’s thinking, within which ‘model-of’ refers to an activity in a specific
setting or context, and ‘model-for’ to a framework of mathematical relations—i.e. an
emerging new mathematical reality.

This new mathematical reality corresponds with the body of mathematical knowledge that
we identified as the central problem when discussing the bridging metaphor earlier. Thus,
instead of trying to help students to make connections with a body of mathematical
knowledge that does not (yet) exist for them, the emergent modeling approach helps
students in constructing this mathematical reality/ body of knowledge by themselves.

The latter delineates how the mantra ‘from model-of to model-for’ has to be understood.
The phrase ‘from model-of to model-for’ is not uncommon. When talking about models,
one will soon use the words ‘model of’ and ‘model for’. This also is the case in earlier RME
literature. What is key in the emergent modeling design heuristic, however, is not the
terminology, but the way it pairs modeling to the construction of a network of
mathematical relations. The idea of supporting students in construing new reality,
comprised of mathematical objects and a network of mathematical relations, differentiates
the emergent modeling design heuristic from conceptions of models and modeling in
earlier RME literature—including Streefland (1985).

We may note that van den Heuvel-Panhuizen (2003) seems to have overlooked this
difference, when emphasizing the role of Streefland (1985) as the originator of the idea of a
‘from model-of to model-for’ shift. Moreover, the expressions ‘model of’ and ‘model for’,
are not salient in Streefland’s (1985) article. He mainly uses this wording while explaining
his idea of a model as an ‘after-image’, which may become a ‘pre-image’ for organizing or
working similar or new problem situations. The latter typology, however, never caught on.
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Footholds for the design strategy

Using emergent modeling in design experiments
The emergent modeling design heuristic has been used in design experiments on various
instructional topics (listed in the Appendix). However, even though emergent modeling as
an instructional design heuristic has been used repeatedly, an operational description is
still lacking. In part, such an operational description may be deduced from the discussion
of the example on the addition and subtraction to 100 presented earlier. As students have
to be supported in developing mathematical relations in order to reach the intended goal
of constructing mathematical objects, one of the first actions of the designer will have to be
to identify which mathematical relations have to be developed. Similarly, starting points in
terms of situations that are experientially real to the students have to be identified. And,
last but not least, a series of sub-models that together constitute some overarching model
have to be found.

We may use such considerations to work out how an instructional designer could build on
the work and research that already has been done in a given domain. This may concern, for
instance, what is known about informal solution strategies, and what it means to be
proficient in this domain. Also, manipulatives, schemas or models that are commonly used
may be taken into consideration. Their strengths and weaknesses should be examined,
considering if and how they might be adapted. Following this line of reasoning, we can
operationalize the emergent modeling design heuristic with the following more detailed
guidelines.

1. Identify the instructional goals

Look at informal solutions and the solutions of proficient students—which may
overlap—to define goals that can be described as objects or as networks of
mathematical relations.

2. Identify a central sub-model

Take stock of the models, manipulatives, and inscriptions that are being used in the
domain under consideration, to create a source of inspiration for the design/choice
of a central model.

3. Identify instructional starting points

Look for contextual problems that are experientially real to the students and can be
modeled with the central model.

4. Design a series of sub-models and identify the overarching model

Situate the central model in a series of sub-models and look for characteristics of the
series of sub-models, which may constitute the overarching model.

5. Reflect on the sequence from the perspective of:

the chain-of-signification
the model-for/model-of transition
the creation of new mathematical reality.
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We will elucidate these guidelines below. For each guideline, we will offer a brief
description of how this guideline would pan out for the design of the sequence for addition
and subtraction up to 100 we just discussed.

1. Identify the instructional goals
When designing an instructional sequence, one has of course some instructional goals in
mind. The emergent modeling heuristic, however, aims at a specific kind of goals; goals in
terms of mathematical objects, or networks of mathematical relations. The heuristic
therefore asks the designer to consider what the goals of the sequence might look like in
terms of mathematical relations or objects. A useful approach often is looking at what is
known about the informal strategies that students invent by themselves.

As instructional goals for the sequence addition and subtraction up to 100 we may point to
structuring numbers in terms of 10s and 1s, decuples-related number relations and
number relations up to 20, in connection with the construction of the corresponding
mathematical objects.

2. Identify a central model
For many topics there are already tactile or visual models in use. Often these models are
presented to the students in a ready-made form, and often the interpretation of the model
as signifying the intended mathematics is erroneously considered self-evident. Still, such
models often can serve as a starting point for designing a series of sub-models within an
emergent modeling heuristic. This is done by adapting the model and considering how
such an adapted model might emerge from meaningful student activity and considering
how working with this kind of model might support students in constructing the intended
mathematical relations and objects.

Looking for a central model for addition and subtraction up to 100, it is natural to think of
the number line model, which is commonly used as a means of support. New in the design
for the sequence up to 100 was the idea of using an empty number line, which was
proposed by Whitney (1988), and adopted by Treffers (1991a).

3. Identify instructional starting points
One of the core elements of emergent modeling is that models do not appear from thin air
but emerge from modeling contextual situations that are experientially real to the
students. Thus, one of the tasks of the instructional designer is to identify such starting
points. In other words, knowing the central model, one has to look for situations that are
experientially real and could be modeled with this model, or an adaption thereof. In
relation to this, one may consider applications of the mathematics under consideration
with an eye on their potential usefulness as starting points.

As instructional starting points Whitney (1988) and Treffers (1991a) chose activities
involving counting beads on a bead string with 100 beads with alternating groups of ten
dark and ten white beads. This was replaced by linear measurement in the aforementioned
teaching experiment, in order to support the coordination of the cardinal and the ordinal
number aspect. The cardinal aspect is reflected in the individual measurement units that
are counted when measuring. The ordinal aspect comes to the fore in the numbers on a
ruler which each indicate a corresponding length. Freudenthal (1983) also argues for this
combination on basis of a didactical-phenomenological analysis. He further adds that
measures play a bigger role in society than quantities.
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Addition and subtraction to 20

4. Design a series of sub-models and identify the overarching model
Similar to considering a careful introduction of the model, the transition from using the
model towards working without a model, or working with standard mathematical
notations, has to be planned carefully.

The sub-models and overarching model of the aforementioned sequence follow in a
natural manner from the choice for linear measurement.

5. Re�ect on the sequence
In conclusion, we may reflect on how the series of sub-models, the model-of/model-for
transition and the creation of new mathematical reality, hang together. Here a table—such
as Table 1—listing how the tools/sub-models, imagery/history, activity, mathematical
issues evolve, may prove helpful. The overview of the sequence for addition and
subtraction up to 100, which is asked for under the heading ‘reflection’, is clearly
elaborated in Table 1.

In the following we will take four separate examples of emergent-modeling-based
sequences to show how they might have been designed with help of the aforementioned
guidelines:

addition and subtraction up to 20
introductory data analysis
graphs
functions

It is not necessary for the reader to engage with each of these examples in sequence; a
selection can be made.

The first example of how the above guidelines might be used concerns a sequence on
addition and subtraction up to 20. For this example, we draw on another design
experiment that was carried out in Nashville, USA (Gravemeijer et al., 2000).

1. Identify the instructional goals
Research shows that proficient students develop strategies that make use of the doubles,
and fives and tens as points of reference, as in ‘7+8=5+5+2+3’, or ‘7+8=14+1’, or
‘7+8=7+3+5=10+5’ (Van Eerde, 1996). We may argue, however, that these students are
not consciously applying strategies such as ‘filling ten’, ‘using doubles’, or ‘using five as a
reference point’. Instead, it seems more likely that the students combine number facts,
which are ready to hand to them, to derive new number facts. When having to solve
‘7+8=…’, for instance, various number facts may come to mind. The students may, for
instance, think of: ‘7+3=10’, ‘8=5+3’, ‘8=7+1’, ‘7=5+2’, ‘7+7=14’, and ‘8+8=16’. Combining
some of those number facts, they may come up with ‘7+8=5+5+2+3’, or ‘7+8=14+1’, or
‘7+8=7+3+5=10+5’, as ways to calculate 7+8. On basis of this analysis we decide to
support students in developing sets of more basic number relations—especially five- and
ten-referenced, and doubles—and foster the flexible use of those number relations to
derive new number facts when solving additions or subtractions up to 20. Thus, the goal of
an instructional sequence on addition and subtraction up to 20, may be conceived as
students developing networks of number relations, and using them flexibly when solving
addition and subtraction problems.
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2. Identify a central model
Searching for ways to model addition and subtraction up to 20, manipulatives shown in
Figure 4 such as ten-frames, the school abacus, and the soroban come to the fore as
sources of inspiration.

The designer’s task then is to think of how working with one of these models might foster
use of the doubles and fives and tens as points of reference when solving addition and
subtraction problems up to 20. The ten-frame, for instance, might foster the use of
doubles, five- and ten-referenced number relations for numbers up to ten. The number of
chips in the ten-frame in Figure 4a can be construed as double 3 plus 1, or double 4 minus
1. It can also be seen as 10 minus 3, or 2 + 5 if you imagine moving one chip. As variation
on the ten-frame, one might think of a double ten-frame ( Figure 4b) to also include
numbers from 10 to 20.

Figure 4 – Manipulatives to model addition and subtraction

4a: Ten Frame 4b: Double ten frame
showing 6 + 7

4c: School abacus 4d: School abacus with five
structure

4e: Soroban
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Figure 5 – Showing 13 on
the arithmetic rack

Treffers (1991b) invented the so-called arithmetic rack,
which is somewhat similar to the double ten-frame. It
consists of two bars with five dark and five white beads on
each bar. Students can visualize numbers on the rack by
shifting beads to the left, with the beads on the left
representing the intended number ( Figure 5).

An advantage of the rack is that there are no loose pieces that may fall on ground, while it
still allows for various solution methods. One may for instance, represent two numbers
independently on the upper and lower bar and find the total, or start with one number and
shift beads to fill up the upper rod, continue on the lower rod and then find the total. The
idea is that students do not just count the beads one by one but take advantage of the
structure of the rack. Once they have put the numbers on the rack, the rack offers a
scaffold for number relations they used when putting the beads on the rack. Having used 6
= 5 + 1 and 7 = 5 + 2 to visualize 6 and 7 on the upper and the lower bar respectively, they
may use those number relations to find the total; (5 + 1) + (5 + 2) = 10 + 3 = 13 (see Figure
5).

Later on, students will be asked to think about the manner in which they want to put the
beads on the rack, before actually putting them on; anticipating how they are going to use
the corresponding number relations. In this manner the teacher may ensure that the
students use the rack as a tool for thinking and not as a primitive calculator. When solving
6 + 7, for instance, students may anticipate using 6 = 5 + 1, and 7 = 5 + 2, in order to build
on 5 + 5 = 10 to calculate 6 + 7 as 5 + 5 + 1 + 2 = 13 (Figure 6a). They might also anticipate
using 6 + 6 = 12, and reason that 6 + 7 = 12 + 1 (Figure 6b). Or they may reason, 6 + 4 =
10, and 7 = 4 + 3, thus 6 + 7 = 13 (Figure 6c).

Figure 6. Showing 6 + 7 on the arithmetic rack
6a. 6 + 7 = 5 + 5 + 1 + 2

6b. 6 + 7 = 6 + 6 + 1

6c. 6 + 7 = 6 + 4 + 3

The arithmetic rack appears to be a perfect candidate for functioning as a central model in
an emergent modeling design on addition and subtraction up to 20. This sub-model has to
be complemented with activities that would support the linkage of the students’ reality on
the one hand with the more formal mathematics on the other hand.
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3. Identify instructional starting points
Treffers (1991b) already recognized the need for a meaningful introduction of the
arithmetic rack. He chose to use the context of varying numbers of passengers in a double-
decker bus. (Others also used contexts such as monkeys in two trees (Cobb, Boufi,
McClain, Whitenack, 1997), or students in bunk beds (Fosnot, 2008).) Students could use
the arithmetic rack to keep track of the number of passengers on the upper and lower
decks by putting the corresponding number of beads on the upper and the lower bar. Next,
problems could be posed, where the students themselves could decide how the numbers
would be distributed over the two bus decks (two bars). Once the students are familiar
with the arithmetic rack, number tasks without context can be assigned.

4. Design a series of sub-models and identify the overarching model
Similar to the care taken in introducing the model, the transition from using the model
towards working without a model, or working with standard mathematical notation, has to
be planned carefully. This step was worked out in the teaching experiment in Nashville, in
which we introduced a more schematized way of notating one’s reasoning when working
with the arithmetic rack as the next step (see Figure 7) (Gravemeijer et al., 2000). Ideally,
of course, the students would have to invent this more formal way of symbolizing. For
practical reasons, however, a symbolic way of notating was introduced casually by the
teacher when discussing students’ solutions. These actions are subsequently notated as
bare ‘sums’.

The teacher did not comment on inscriptions she made on the blackboard. Later she asked
the students to come up with their own ways of describing their reasoning on paper. The
students used variants of what they had seen on the blackboard.

Figure 7 – A symbolic notation of solving 7 + 8 on arithmetic rack

This symbolic notation shows:

5 + 2 beads to represent 7 on the top rod and
5 + 3 beads to represent 8 on the bottom rod.

Then taking the two 5s togather and adding the
remaining white beads.

5. Re�ect on the sequence
The chain-of-signification (series of sub-models) is described in Table 2.
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Tool/inscription History/imagery Activity Mathematical
issues

Double-decker
bus

Keeping track of
the number of
passengers

Arithmetic rack Passengers on a
double-decker bus

Calculating the
number total or
remaining
number of
passengers

Developing and using
doubles-related, and
five- and ten-
referenced number
relations

Symbolic
descriptions

Beads on the
arithmetic rack

Describing
addition
strategies with
beads on the
arithmetic rack

Developing and using
doubles-related, and
five- and ten-
referenced number
relations

Table 2 – Chain-of-signification for addition and subtraction up to 20.

In retrospect we note that the students initially describe a contextual situation of
passengers on a double-decker bus. Then the configuration of beads on the arithmetic rack
is used to describe what happens in the context of the task, and it functions as a model-of
(reasoning about) the distribution of the passengers in the bus. Subsequently—under
guidance of the teacher—the attention of the students gradually shifts towards the number
relations involved, and how they can be used. As more number relations are being formed,
actions on the arithmetic rack start to signify for the students the ways of reasoning with
those number relations, and thus becomes a model-for more formal mathematical
reasoning. This transition is further supported by the introduction of the symbolic form of
Figure 7. Over time the students may become so proficient that they will not need visual
scaffolding anymore. The students then reach the level of more formal mathematical
reasoning.

When zooming out, we may see the sequence as part of a transition from an operational
conception to a structural conception (Sfard, 1991). This encompasses the transition from
processes, such as counting and structuring quantities, to the constitution of numbers as
objects that derive their meaning from a network of number relations.
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Introductory Data Analysis
For the next example, designing a sequence on introductory data analysis, we draw on a
third design experiment that was carried out in Nashville (Gravemeijer & Cobb, 2013).

Figure 8 – Distribution of
incomes of a group of
university graduates

1. Identify the instructional goals
The choice of goals is determinative for the introductory
data analyses sequence. Common goals concern the
measures of central tendency and standard visualizations.
However, when aiming for goals in terms of mathematical
objects and a network of mathematical relations a different
goal comes to the fore, namely that of ‘distribution’ as an
object. The line of reasoning here is that mean, mode,
median, quartiles, extremes, and the various visualizations
are all invented as means of characterizing a distribution of
the datapoints. These instruments can be reinvented while
developing the notion of a distribution as an object. This
object may be conceptualized by the designer as a density function; a function that
describes the density of data points for a range of measurement values. This density
function may be depicted as a curve, such as the bell-curve for a normal distribution or the
skewed curve shown in Figure 8. The network of relations encompasses data points and
density but also skewedness, spread, position, measures of central tendency and visual
representations.

Figure 9 – Lifespans of two
brands of batteries2. Identify a central sub-model

The central model logically involves the distribution of data
points. And thus, the dot plot presents itself as a self-
evident choice for the central model.

3. Identify instructional starting points
When looking for experientially real starting points, we
may consider that data find their origin in measuring. We
may assume that students are familiar with scale lines and
bar graphs as ways of representing data. It may further be argued that variables with a
linear or temporal character lend themselves in a natural way for visualizing values with
line segments. In the Nashville experiment this was worked out in the task of comparing
data on two brands of batteries, in service of a consumer report. Instead of giving students
the raw data, however, the data were embedded in a computer tool, Minitool 1, in which
each measure is represented by a bar (Figure 9). A slide show demonstrating the tool is
found at: www.fisme.science.uu.nl/toepassingen/28848/images/diashowminitools.html

4. Design a series of sub-models and identify the overarching model
The sub-models have to connect the initial way of representing data with the dot-plot
representation, and the latter with a more sophisticated model of a distribution. The
transition from individual bars to a dot plot can be made by imagining the endpoints of the
bars dropping on the horizontal axis. The value-bar representation shown in Figure 10,
would then turn into the dot plots of Figure 11.
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Figure 10 – Value bars
(Minitool 1)

Figure 11 – Dot plots (Minitool 2)

Figure 12 – Data split into
four equal groups

Tasks on comparing data sets might facilitate this, as this
would focus the attention on the endpoints of the bars.
Subsequently, the focus may shift to how the density of
data points is distributed over the range of measurement
values (in this case, the horizontal axis). Hereto a second
computer tool, Minitool 2, was designed, which allowed for
structuring data sets represented as dot plots. This is also
demonstrated in the slide show.

To foster the transition to a more sophisticated representation such as a box plot, the
computer tool facilitated introducing vertical bars splitting the data sets in two or four
equal groups (see Figure 12).

Figure 13 – Box plot and
the shape of a distribution

Working with those tools, the students might start to
realize that the data-density is bigger where the vertical
bars are closer to each other. At the same time, the students
are expected to start talking in terms of the shape of the
distribution. Key here is that the students come to see that,
in many data sets, the median is a good indicator of where
the data is clustered. The four equal groups representation
may function as a precursor for the box plot (see Figure 12). In the box plot, the central
vertical line shows the median, and the boxes and the whiskers showing how the data
points are spread out. Thanks to this history, the box plot may come to signify the shape of
a distribution for the students (Figure 13). In this way the box plot may become a tool for
reasoning about skewness, spread and position.

In retrospect, we may notice that this sequence also could have been found by using
Freudenthal’s (1983) Didactical Phenomenological Analysis, which advises the designer to
analyze what phenomena are organized by the concept, tool or procedure you are aiming
for. Thus, the question would be: what phenomenon is organized by a density function?
This question might be answered with ‘density’. Simultaneously, density organizes ‘data
points on an axis’. In turn, the representation of data points on an axis organizes
measurement values.

Given the sub-models that come into play, we may describe the overarching model as ‘the
graphical representation of the shape of a distribution’.
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5. Re�ect on the sequence
As with the other examples, we see three intertwined transitions. The first evolves along
the series of sub-models; value bars, dot plot, four equal groups, and box plot. Table 3
shows how these sub-tools build on each other. Table 3 also shows what mathematical
issues correspond with the various activities the students engage in. The second concerns
the shift from a model of a set of measures to a model for reasoning about distributions (as
objects). The third involves the constitution of new mathematical reality in which
distributions exist as object-like entities.

Table 3 – Chain-of-signification for introductory data analysis.

Tool/inscription History/imagery Activity Mathematical
issues

Measures
Talking
through the
process of data
creation

Doing data analysis
for a reason

Set of value bars Measures
Describing and
comparing data
sets

Lengths signifying
measures
Measures as values
of a variable
Horizontal axis
signifying values of a
variable
Shape of the
distribution

Dot plot Set of value bars
Describing and
comparing data
sets

Shape of the
distribution
Heights of stacked
dots signifying
density

Dot plot split into
four-equal

groups/box plot
Set of (endpoints
of) value bars

Describing and
comparing data
sets

Distribution as an
object; position,
skewness,
narrowness
Shape of the
distribution
Widths of bins
correspond inversely
with density
Distribution as an
object; position,
skewness,
narrowness
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Graphs
In anticipation of the example of functions, we will first discuss a sequence on graphs. In
our view, graphs – which are an essential component of functions – warrant an
independent sequence. Graphs and graphing are less straightforward than often
presumed. It is often overlooked that what we can infer from graphs is dependent on some
hidden conventions. Associating slope with ascending, descending or constant function
values may be just a language game for many students, which is not grounded in
understanding why and when the steepness of a graph relates to adjacent function values.
We argue therefore that students have to reinvent graphing as a tool for analyzing
relations between two variables. In our exposition on how the guidelines might be applied
for designing a sequence on graphs we primarily draw on a series of design experiments by
Van Galen and others on graphing (see for instance, Van Galen & Gravemeijer, 2010; Van
Galen & Markusse, 2018). These were carried out in the Netherlands.

1. Identify the instructional goals for graphs
The mathematical relations that underpin Cartesian graphs are hidden in conventions.
These conventions, for instance, concern the proportional way variables are mapped on
the axes. They also involve interpreting a point on the Cartesian plane as a number pair
signifying two connected measures. Moreover, students have to make the shift from
measures as attributes to measures as values of a variable (Jones, 1971). Initially, students
see measures as attributes e.g. 174 cm is the length of Suzanne. In order to be able to
reason about the relation between length and time, however, students have to see
measures as potential values of a variable that can vary over a certain domain. Moreover,
students have to conceptualize graphs of continuous data as objects that can be interpreted
dynamically.

Figure 14 – Bar graph2. Identify a central sub-model
A simple graph may consist of a series of bars signifying
individual measures at distinct points in time (Figure 14).
We may take this as the central sub-model, which has to be
connected with experientially real starting points on the
one hand, and graphs of continuous data on the other
hand.

3. Identify instructional starting points
Tasks on depicting growth, time or speed, are rather common as a way of introducing
cartesian graphs. Here one may assume that students are familiar with depicting
individual measures such as lengths, e. g. when working with scale lines, or case-value bar
graphs. (One might also start earlier by developing bars as representations of magnitudes.)
Then the context of depicting the growth of a person or a plant on the basis of pairs of time
and height data, might be considered experientially real for the students. Similarly, the
context of depicting distances traveled in fixed time intervals with paper strips might be
experientially real for the students.
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4. Design a series of sub-models and identify the overarching model
Here we follow Van Galen and Gravemeijer (2010), who chose an initial task of depicting
the growth of a sunflower over a period of time with a data set that included irregular
intervals. Many students initially made nice drawings of a series of sunflowers, but later
realized that they could suffice with bars or even lines that showed the heights. As might
be expected, not all students used proportional axes. The first sub-model may therefore be
thought of as graph-like pictures in which the proportionality of the axes is not a given. An
example is shown in Figure 15, where neither the vertical axis (height) nor the horizontal
axis (weeks) are proportional.

Figure 15 – Sunflower growth graph, with axes not proportional

In order to make the step to a Cartesian graph, the need for proportionality of the axes of
the student-made graphs has to be framed as a topic of discussion. The final sub-model
may consist of graphs of continuous data. A rather obvious sub-model that may prepare
for this is a segmented-line graph; a graph of discrete data in which the end points of the
bars are connected by line segments, as shown in Figure 16.
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Figure 16 – Segmented-line graphs of growth of a sunflower and a girl

Figure 17 – A distance-time
graph of continuous data

To foster the transition to graphs of continuous data,
whole-class discussions may be focused on what points on
those lines would signify, and how the steepness of the
connecting lines could be interpreted. Here steepness has
to be explicitly linked to the differences in the
corresponding values on the horizontal axis and the vertical
axis. Graphs of continuous data may be introduced as
computer drawn graphs generated by a motion detector
(see Figure 17), which become a topic of whole-class
discussions (Van Galen, Gravemeijer, Van Mulken &
Quant, 2012).

Figure 18 – Segmented-line
graph and proposed
improvements

As an alternative, we may think of the context of filling
glassware that was used by de Beer, Gravemeijer & Van
Eijck (2018). Here the students themselves made the shape
of the graph the topic of discussion. When the speed with
which the water level in a cocktail glass would rise was
visualized as a segmented-line graph of water height versus
time, some students challenged the correctness of this
graph. They argued that the rising speed was changing
constantly, and that the graph therefore had to be curved
(see Figure 18).

As summarized in Table 4, this analysis proposes the
following series of sub-models:

1. pictures or bars showing magnitudes, such as the
heights of the sunflower at various points in time,

2. bar graphs or case-point graphs with proportional axes,
3. segmented-line graphs,
4. curve.
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Functions

Table 4 – Chain-of-signification for graphs

Tool/inscription History/imagery Activity Mathematical
issues

Heights of
plants

Measuring
heights of plants

Series of
pictures/case-

value bars
Heights of plants

Describing the
growth of plants
visually

Proportional
representations

Discrete
proportional

graphs

Series of
pictures/case-
value bars

Depicting
measures
proportionally

Cartesian graphs

Line graphs
Proportional
graphs of discrete
data

Interpolating
Assessing
growing speed

Rise-over-run as a
measure for rate of
change

Curve Line graphs
Interpreting
graphs of
continuous data

Graphs of
continuous data

5. Re�ect on the sequence
Looking at the series of sub-models we may identify a shift from models of heights of
sunflowers to models for reasoning about co-variation. Note that the first sub-model is
static, the bars or pictures of sunflowers signify the lengths of a given sunflower at given
moments in time. Later on, points on Cartesian plane are seen as showing how two
variables co-vary. This coincides with a shift from measures as attributes to measures as
potential values of a variable. In addition, we observe that the sequence involves graphs of
empirical functions which may evolve into graphs that are defined algebraically later on. In
this respect, the sequence on graphs not only serves as a prequel to a sequence on
functions, but also overlaps to some extent with such a sequence.

We will continue with our last example, concerning a sequence on functions. Here we
primarily draw on the so-called Tool Use project (Doorman, Drijvers, Gravemeijer, Boon,
Reed, 2012) that was carried out in the Netherlands. The website “ Functions and Arrow
Chains” shows the introductory module based around the arrow applet.

1. Identify the instructional goals
An obvious starting point for a goal description is Sfard’s (1991) notion of the dual nature
of functions as both processes and objects. The process aspect refers to calculating an
output value for a given input value. The object aspect may be linked to the conception of a
function as a set of ordered number pairs. Functions-as-objects can be seen as having
certain characteristics—such as being linear, quadratic or periodic. Further, they can be
subject to various operations, such as comparing, taking the inverse, and identifying
families of functions. The object character also involves relations between three
representations; algebraic expressions, tables and graphs (Janvier, 1987). Additional
relations include the notion of a function as a dynamic process of co-variation; imaging
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an independent variable running through the domain set while the dependent variable co-
varies (Drijvers, et al., 2007). Tables and graphs can be scrolled through or traced, and the
character of the covariation can be related to the corresponding algebraic expressions.
Note that each representation brings its own perspective on functions as objects. Graphs,
for instance, instantiate the idea of a set of ordered number pairs, and illuminate
characteristics such as being linear, quadratic or periodic. The algebraic aspect of a
function as an object encompasses symbol sense and structure sense (Arcavi, 1994;
Bokhove & Drijvers, 2010). This involves reading through algebraic expressions, realizing
what symbols signify, breaking expressions into meaningful subexpressions, recognizing
structure, and flexibly manipulating algebraic expressions, which may evolve into treating
subexpressions as variables in and of themselves (Wenger, 1987)), and exploring the role
of parameter. These may all be considered as belonging to a fully-fledged functions
concept. For this exposition on emergent modeling, however, we will focus on the first
phase, the shift from process to object.

2. Identify a central sub-model
A common model to support instruction on functions is that of machines or arrows as
shown in Figure 19, which takes any number, adds 3, squares the answer and then
multiplies by 5.

Figure 19 – Arrow chain

Here, each machine or arrow represents one arithmetical operation. This model shows
both the procedural, input-output, character of a calculational prescription, and the
structure in terms of a sequence of operations. This may be exploited in two ways. One, by
varying the input and applying the chain of operations on a set of input values creating a
set of ordered number pairs. Second, by investigating how chains can be varied, curtailed
and what an inverse chain would look like. Given those possibilities, the arrow chain is
chosen as the central sub-model.

3. Identify instructional starting points
Starting points may obviously be chosen in contextual problems that involve the repeated
executions of similar series of arithmetical operations. These may develop into recipes for
generating the correct output for a given input. A potential starting point for middle-grade
students might be the context of mobile-phone subscriptions, calculating the cost for
various amounts of calling time (Drijvers, et al., 2007).

Figure 20 – Dynamic table4. Design a series of sub-models and identify
the overarching model
Explicating how a series of sub-models might be developed,
we will follow the approach of Drijvers et. al. (2007) in the
Tool-use project. This project is especially interesting as it
involved the development of a computer tool, named

Arrow Applet (Boon & Drijvers, 2005). The computer tool
enables students to design and use arrow chains for generating the output of a series of
calculations for a variety of input values. It also offers the possibility of investigating the
arrow chains themselves, for instance, by changing the order of the operations, curtailing
or expanding arrow chains, or designing inverse arrow chains. The computer tool allows
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for generating tables of input and output values. Also, by enabling students to move up
and down these tables, the computer tool supports the students in developing a dynamic
notion of a function consisting of variables that can vary within spaces of possible values.
Figure 20 shows a table generated for a function, which is described by the calculational
prescription, ‘take a number, add 5, then multiply by 4’.

In terms of designing a series of sub-models, we argue that the series has to start with
modeling the aforementioned contextual problems involving repeated executions of the
arithmetical operations. Here the initial sub-model will obviously consist of number
sentences and written text. Given our choice for the central sub-model, the number
sentences will have to be replaced by arrow chains that signify the series of operations, as
in Figure 19. Here students may first experiment with drawing arrow chains on paper,
before getting introduced to the computer tool.

Figure 21 – Arrow chain,
table and graph

To make the shift towards the structural conception of
ordered number pairs, the model may be extended by
adding the option to make tables, which we may consider
the next sub-model. Apart from construing input-output
tables as sets of ordered number pairs, the tables can also
be investigated dynamically. As shown in Figure 20, the
computer tool allows for having a variable running through
the input or output column of the table to observe the co-
variation.

To complete the integration of the three aspects of
functions (expressions, tables and graphs), graphing has to
be added in the next sub-tool. Figure 21 shows arrow chain, table and graph for the
function ‘take a number, add 5 and multiply by 4’. We identify the arrow language as the
overarching model.

5. Re�ect on the sequence
The series of sub-models may be conceived as a transition from arrow language as a model
of a fixed series of calculations to a model for reasoning about functions as objects. The
series of sub-models making the chain-of-signification is summarized in Table 5.
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Conclusion

Table 5 – Chain-of-signification for functions

Tool/inscription History/imagery Activity Mathematical issues

Written
calculation

Finding
output values

Calculation recipe &
notion of variable

Machine/arrow
language Written calculation Finding

output values
Calculation recipe &
notion of variable

Arrow chain in
AA-applet

Machine/arrow
language

Identifying
input &
output
variables, and
finding
output values

Calculation recipe &
notion of variable

Tables in AA-
applet

Arrow chain in AA-
applet

Investigating
dependency

Notion of variable, and
relation between input
and output variables

Graphs in AA-
applet

Tables and arrow
chains in AA-
applet

Investigating
relations
between
functions

Treating functions as
objects (sets of ordered
number pairs),
characteristics of input-
output relationships

By generating arrow chains, tables, and graphs with the computer tool, students have the
opportunity to treat functions as objects before they have become objects to them. We may
observe, however, that further exploration is needed to develop a fully-fledged function
concept. This may be achieved with additional Algebra Arrows applet option which allows
inserting a letter into the input box. This results in an algebraic expression in the output
box, as shown in Figure 22. The algebraic expressions are also shown. This opens up a
variety of possibilities for exploring the relation between algebraic expressions, arrow
chains and graphs.

Figure 22 – Letters as input, algebraic expressions as output

The aim of this article is to lay out an operational version of the so-called emergent
modeling design heuristic. We started by explaining and elaborating the heuristic with
addition and subtraction up to 100 as an example. We showed that this heuristic
originated within the context of a socio-constructivist elaboration of RME. Emergent
modeling was operationalized by a series of guidelines, which encompass, (1) identifying
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the instructional goals; (2) identifying the central sub-model; (3) identifying
instructional starting points; (4) designing a series of sub-models and identifying the
overarching model; and (5)reflecting on the result. We discussed four examples to show
how some existing designs could be reconstructed by using these guidelines; for these we
identified goals in terms of mathematical objects and a network of mathematical relations:

for addition and subtraction up to 20, developing and using a network of number
relations,
for introductory data analysis, construing the distribution of data in a data set as an
object,
for graphs, re-inventing graphing to make hidden conventions explicit
for functions, conceptualizing functions as both procedures and objects.

We further showed that the central model may often be found by looking at the tactile and
visual models that are already in use: ten-frames and the arithmetic rack for addition and
subtraction up to 20; the dot plot for data analysis; the bar graph for graphing, and the
arrow language for functions. To make such models fit the emergent modeling design
heuristic, they have to be grounded in the experiential reality of the students. Thus,
experientially real problem situations have to be sought that may be modeled with one of
those models or a precursor thereof. Moreover, usually an in-between model is needed to
make the transition from working with a model to more formal mathematical activity.

We argue that the above examples show the feasibility of the guidelines as heuristics for
designing sequences—while acknowledging that there is always a creative act involved.
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Design experiments using the emergent modeling design heuristic
Addition and subtraction up
to 20

Gravemeijer, Cobb, Bowers &
Whitenack (2000)

Addition and subtraction up
to 100

Stephan, Bowers & Cobb with
Gravemeijer (2003)

Two-digit multiplication Buijs (2008)

Column algorithms for
addition and subtraction

Gravemeijer, McClain & Stephan
(1998)

Integer addition and
subtraction Stephan & Akyuz (2012)

Introductory data analysis Gravemeijer & Cobb (2013)

Introductory data analysis Bakker (2004)

Graphing Van Galen & Gravemeijer (2010)

Functions Drijvers, Doorman, Boon, Van
Gisbergen & Gravemeijer (2007)

Calculus Doorman (2005)

Instantaneous speed De Beer (2016)

Differential equations Rasmussen & Blumenfeld (2007)

Bifurcation diagram Rasmussen, Dunmyre, Fortune &
Keene (2019)

Introductory linear algebra Wawro, Rasmussen, Zandieh, Sweeney
& Larson, (2012)

Matrices Andrews-Larson, Wawro & Zandieh
(2017)

Non-Euclidean geometry,
triangles on a sphere

Zandieh & Rasmussen (2010)

Group and isomorphism
concepts Larsen (2013)

Eigenvectors & eigenvalues Plaxco, Zandieh & Wawro (2018)
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